精英家教网 > 高中数学 > 题目详情
15.函数y=log${\;}_{\frac{1}{2}}$(x2-3x+2)的单调递增区间为是(  )
A.(0,+∞)B.(-∞,1)C.(-∞,$\frac{3}{2}$]D.(2,+∞)

分析 求出函数的定义域,根据复合函数的单调性求出函数的递增区间即可.

解答 解:由x2-3x+2>0,得x<1或x>2.
∴函数y=${log}_{\frac{1}{2}}$(x2-3x+2)的定义域为(-∞,1)∪(2,+∞).
当x∈(-∞,1)时,内函数为减函数,
当x∈(2,+∞)时,内函数为增函数,
而外函数${log}_{\frac{1}{2}}$t为减函数,
∴函数y=${log}_{\frac{1}{2}}$(x2-3x+2)的单调递增区间为(-∞,1),
故选:B.

点评 本题考查了函数的单调性问题,考查二次函数以及对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;     
(Ⅱ)求数列{2${\;}^{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对于任意x∈R,函数f(x)满足f(x+2)=f(x),且当$-\frac{1}{2}≤x≤\frac{3}{2}$时,f(x)=-|2x-1|+1.则函数y=f(x)(-2≤x≤4)与函数$g(x)=\frac{1}{x-1}$的图象所有交点的横坐标之和等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:$0.25×{(\frac{1}{2})^{-2}}+lg8+3lg5$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若非零函数f(x)对于任意的实数a,b均有f(a+b)=f(a)?f(b),且当x<0时,f(x)>1.
(1)求f(0)的值;
(2)求证:$f(-x)=\frac{1}{f(x)}$;
(3)求证:f(x)>0;
(4)求证:f(x)为减函数;
(5)当$f(4)=\frac{1}{16}$时,解不等式f(x2+x-3)?f(5-x2)≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=x2+ax+3在区间[-1,1]上的最小值为-4.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.A,B两个工厂距一条河分别为400m和100m,A、B两工厂之间距离500m,且位于小河同侧.把小河看作一条直线,今在小河边上建一座供水站,供A,B两工厂用水,要使供水站到A,B两工厂铺设的水管长度之和最短,问供水站应建在什么地方?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,则a2>b2
C.若a>b,c<d,则 a-c<b-dD.若a<b<0,则$\frac{1}{a}<\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$sin\frac{7π}{8}cos\frac{7π}{8}$=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

同步练习册答案