精英家教网 > 高中数学 > 题目详情
椭圆
x24
+y2=1
的焦点为F1,F2,点P在椭圆上,且线段PF1的中点恰好在y轴上,|PF1|=λ|PF2|,则λ=
7
7
分析:先根据比例线段可推断出PF2平垂直于x轴,根据椭圆的标准方程求出焦距,进而设|PF1|=t根据勾股定理求得t和|PF2|得出答案.
解答:解:∵O是F1F2的中点,
∴PF2平行y轴,即PF2平垂直于x轴
∵c=
a2-b2
=
3

∴|F1F2|=2
3

设|PF1|=t,根据椭圆定义可知|PF2|=4-t
∴(4-t)2+12=t2,解得t=
7
2

∴|PF2|=
1
2

∴|PF1|:|PF2|=7,则λ=7.
故答案为:7
点评:本题主要考查了椭圆的定义及简单性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
4
+y2=1
的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则P到F2的距离为(  )
A、
3
2
B、
3
C、
7
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x24
+y2=1
的焦点为F1、F2,点P为椭圆上任意一点,过F2作∠F1PF2的外角平分线的垂线,垂足为点Q,过点Q作y轴的垂线,垂足为N,线段QN的中点为M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△AOQ,O为坐标原点,点A(1,0),Q为椭圆
x24
+y2=1上的动点,求AQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知A,B是双曲线
x2
4
-y2=1
的两个顶点,点P是双曲线上异于A,B的一点,连接PO(O为坐标原点)交椭圆
x2
4
+y2=1
于点Q,如果设直线PA,PB,QA的斜率分别为k1,k2,k3,且k1+k2=-
15
8
,假设k3>0,则k3的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)已知椭圆
x2
4
+y2=1
的下顶点为A,点B是椭圆上的任意的一点,点C、D是直线x-y-4=0上的两点(C在D的下方),则
AB
CD
|
CD
|
的最大值是(  )

查看答案和解析>>

同步练习册答案