精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|1≤x≤4}与B={x|x2-2ax+a+2≤0},若A∩B=A,则实数a的取值范围为[3,+∞).

分析 利用A∩B=A,可得A⊆B,根据A={x|1≤x≤4},B={x|x2-2ax+a+2≤0},可得$\left\{\begin{array}{l}{1-2a+a+2≤0}\\{16-8a+a+2≤0}\end{array}\right.$,即可求出实数a的取值范围.

解答 解:∵A∩B=A,
∴A⊆B,
∵A={x|1≤x≤4},B={x|x2-2ax+a+2≤0},
∴$\left\{\begin{array}{l}{1-2a+a+2≤0}\\{16-8a+a+2≤0}\end{array}\right.$
解得a≥3.
故答案为:[3,+∞).

点评 本题考查实数a的取值范围,考查集合的关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x2+ax+2,且f(x)在x=-1处取极大值.
(1)求实数a的值;
(2)证明:当k<1时,曲线y=f(x)+10x与直线y=kx-2只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域
y=$\frac{1}{x-2}$+$\sqrt{2-(\frac{1}{2})^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设O为坐标原点,已知△ABO的OA边的高线方程:x+2y-11=0,边OB的中线方程为5x+y-14=0.
(1)求A、B坐标;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线2x+y-3=0的倾斜角为θ,则$\frac{sinθ+cosθ}{sinθ-cosθ}$的值是(  )
A.-3B.-2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=|x+a|(|x-a+1|+|x-3|+2)的图象是轴对称图形,则实数a的值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=sinx+2的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=1g(tan2x)的定义域是(  )
A.(kπ,kπ+$\frac{π}{2}$)(k∈Z)B.(2kπ,2kπ+$\frac{π}{2}$)(k∈Z)C.($\frac{1}{2}$kπ,$\frac{1}{2}$kπ+$\frac{π}{2}$)(k∈Z)D.($\frac{1}{2}$kπ,$\frac{1}{2}$kπ+$\frac{π}{4}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足a=2$\sqrt{2}$,A=45°,cosB=$\frac{1}{2}$.
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案