【题目】如图,在矩形中,,,分别是边上的三等分点,将分别沿、折起到、的位置,且使平面底面,平面底面,连结.
(1)证明:平面;
(2)求点到平面的距离.
【答案】(1)见解析(2)
【解析】
(1)过D′,C′作AF,BE的垂线,垂足为M,N,连结MN,推出D′M⊥平面ABEF,C′N⊥平面ABEF,从而D′M∥C′N,得到四边形D′MNC′为平行四边形,利用线面平行的判定定理即可得到证明;(2)连结DD′,设点A到平面EFD′C′的距离为h,由,能求出点A平面EFD′C′的距离.
(1)分别过点作的垂线,垂足为,连接
因为平面底面,且平面底面,
所以平面,
同理可证,平面,
所以,
又 ,所以
从而四边形为平行四边形,则,
又平面,
所以平面.
(2)连结,在中, ,所以.
因为,
所以.
设点到平面的距离为,因为,
,.
所以,
由得,
所以,故点到平面的距离为.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.
(1)若平面,证明:;
(2)在(1)的条件下,棱上是否存在点,使直线与平面所成角的大小为?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为常数,函数.给出以下结论:
①若,则在区间上有唯一零点;
②若,则存在实数,当时, ;
③若,则当时,.
其中正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.
(1)若m=0,写出A∪B的子集;
(2)若A∩B=B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图给出的是2000年至2016年我国实际利用外资情况,以下结论正确的是( )
A. 2000年以来我国实际利用外资规模与年份呈负相关
B. 2010年以来我国实际利用外资规模逐年增大
C. 2008年以来我国实际利用外资同比增速最大
D. 2010年以来我国实际利用外资同比增速最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的坐标方程为,若直线与曲线相切.
(1)求曲线的极坐标方程;
(2)在曲线上取两点、于原点构成,且满足,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com