精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,0),
b
=(cosx,1),其中 0<x<
3
,求|
1
2
a
-
3
2
b
|的取值范围.
分析:由已知中向量
a
=(sinx,0),
b
=(cosx,1),其中 0<x<
3
,我们易根据向量数量积的坐标公式,求出|
1
2
a
-
3
2
b
|的表达式,利用降幂公式,我们将将其化为正弦型函数的形式,根据正弦型函数的性质,得到|
1
2
a
-
3
2
b
|的取值范围.
解答:解:∵向量
a
=(sinx,0),
b
=(cosx,1),
∴|
1
2
a
-
3
2
b
|2=|(
3
2
cosx-
1
2
sinx,
3
2
)|2(2分)
=(
3
2
cosx-
1
2
sinx)2+
3
4
(3分)
=sin2(x-
π
3
)+
3
4
.(3分)
0<x<
3
,∴-
π
3
<x-
π
3
π
3
,(2分)
∴0≤sin2(C-
π
3
)<
3
4
,(2分)
得|
1
2
a
-
3
2
b
|∈[
3
2
6
2
).(2分)
点评:本题考查的知识点是平面向量数量积的坐标表示、模、夹角,其中根据向量数量积的坐标公式,求出|
1
2
a
-
3
2
b
|的表达式,并化简表达式,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(cosθ,1)
(1)若
a
b
,求tanθ;
(2)当θ∈[-
π
12
π
3
]时,求f(θ)=
a
b
-2|
a
+
b
|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,-cosθ),θ∈(0,π)
(Ⅰ)若
a
b
,求θ;
(Ⅱ)若
a
b
=
1
5
,求tan(2θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ),
b
=(2,1),满足
a
b
,其中θ∈(0,
π
2
)

(I)求tanθ值;
(Ⅱ)求
2
sin(θ+
π
4
)(sinθ+2cosθ)
cos2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,cosθ)与
b
=(
3
,1),其中θ∈(0,
π
2

(1)若
a
b
,求sinθ和cosθ的值;
(2)若f(θ)=(
a
b
)
2
,求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
cosθ),
b
=(1,1).
(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,且0<θ<π,求角θ的大小.

查看答案和解析>>

同步练习册答案