精英家教网 > 高中数学 > 题目详情

【题目】为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:

1)求频率分布直方图中的值;

2)根据频率分布直方图估计该组数据的中位数(精确到);

3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.

【答案】127.73

【解析】

1)由直方图知,由此能求出

2)由频率分布直方图中的中位数为频率为0.5对应的横坐标,即可能估计高二数学成绩的中位数;

3)记成绩落在中的2人为,成绩落在中的3人为,从成绩在的学生中任选2人,利用列举法能求出2人的成绩都在中的概率.

1)由直方图可得:,解得:.

2)该组数据的中位数:.

3)成绩在人,记为,成绩在人,记为

设事件人的成绩都在,所有的基本事件为:

种,

满足条件的基本事件为:3

,故人的成绩都在中的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若函数零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)若上递增,求的最大值;

(2)若,存在,使得对任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称D上的有界函数,其中M称为函数的上界已知函数

,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

若函数上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上一点的坐标为.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,且以线段为直径的圆过椭圆的右顶点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若函数存在唯一的零点,且,则的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,处罚时,得到如下数据:

处罚金额(单位:元)

50

100

150

200

迟到的人数

50

40

20

0

若用表中数据所得频率代替概率.

(Ⅰ)当处罚金定为100元时,员工迟到的概率会比不进行处罚时降低多少?

(Ⅱ)将选取的200人中会迟到的员工分为两类:类员工在罚金不超过100元时就会改正行为;类是其他员工.现对类与类员工按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类员工的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的长轴长是短轴长的2倍,左焦点为.

1)求C的方程;

2)设C的右顶点为A,不过C左、右顶点的直线lC相交于MN两点,且.请问:直线l是否过定点?如果过定点,求出该定点的坐标;如果不过定点,请说明理由.

查看答案和解析>>

同步练习册答案