20£®Ä³Ð£ÎªÁ˵÷²é¸ßÈýÄ꼶ѧÉúij´ÎÁª¿¼Êýѧ³É¼¨Çé¿ö£¬Óüòµ¥Ëæ»ú³éÑù£¬³éÈ¡ÁË50Ãû¸ßÈýÄ꼶ѧÉú£¬ÒÔËûÃǵÄÊýѧ³É¼¨£¨°Ù·ÖÖÆ£©×÷ΪÑù±¾£¬µÃµ½ÈçϵÄƵÊý·Ö²¼±í£º
ƵÊý[50£¬60£©[60£¬70£©[70£¬80£©[80£¬90£©[90£¬100]
ƵÊý31319114
£¨¢ñ£©Èô¸ÃУ¸ßÈýÄ꼶ÿλѧÉú±»³éÈ¡µÄ¸ÅÂÊΪ0.1£¬Çó¸ÃУ¸ßÈýÄ꼶ѧÉúµÄ×ÜÈËÊý£»
£¨¢ò£©¹À¼ÆÕâ´ÎÁª¿¼¸ÃУ¸ßÈýÄ꼶ѧÉúÊýѧ³É¼¨µÄƽ¾ù·Ö¼°·½²î£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨¢ó£©¸ù¾ÝÒÔÉϳéÑùÊý¾Ý£¬ÄÜ·ñÈÏΪ¸ÃУ¸ßÈýÄ꼶±¾´ÎÁª¿¼Êýѧ³É¼¨·ûºÏ¡°ÓÅÐ㣨80·Ö¼°80·ÖÒÔÉÏΪÓÅÐ㣩Âʲ»µÍÓÚ25%¡±µÄÒªÇó£¿

·ÖÎö £¨¢ñ£©Éè¸ßÈýÄ꼶µÄ×ÜÈËÊýΪn£¬ÓÉ$\frac{50}{n}$=0.1£¬½âµÃ¼´¿É£»
£¨¢ò£©£¬ÏÈÇó³ö¸÷×é³É¼¨µÄƵÂÊ£¬ÔÙ¸ù¾Ýƽ¾ùÊýµÄ¹«Ê½ºÍ·½²î¹«Ê½¼ÆËã¼´¿É£»
£¨¢ó£©³É¼¨·ÖÊýΪÓÅÐãËùÕ¼µÄ±ÈÀýµÄ¹À¼ÆֵΪ0.22+0.08=0.30£¬¼´¿ÉµÄÅжϷûºÏÒªÇó£®

½â´ð ½â£º£¨¢ñ£©Éè¸ßÈýÄ꼶µÄ×ÜÈËÊýΪn£¬ÓÉ$\frac{50}{n}$=0.1£¬µÃµ½n=500£¬
ËùÒÔ¸ßÈýÄ꼶µÄ×ÜÈËÊýΪ500ÈË£¬
£¨¢ò£©ÒÔÌâÒ⣬ÇóµÃ¸÷×é³É¼¨µÄƵÂÊ·Ö±ðΪ0.06£¬0.26£¬0.38£¬0.22£¬0.08£¬
ËùÒԳɼ¨µÄƽ¾ù·ÖΪ$\overline{x}$=55¡Á0.06+65¡Á0.26+75¡Á0.38+85¡Á0.22+95¡Á0.08=75£¬
³É¼¨µÄÑù±¾·½²îΪs2=£¨-20£©2¡Á0.06+£¨-10£©2¡Á0.26+0¡Á0.38+102¡Á0.22+202¡Á0.08=104£¬
ËùÒÔ¹À¼ÆÕâ´ÎÁª¿¼¸ÃУ¸ßÈýÄ꼶ѧÉúÊýѧ³É¼¨µÄƽ¾ù·ÖΪ75·Ö£¬·½²îΪ1-4£¬
£¨¢ó£©³É¼¨·ÖÊýΪÓÅÐãËùÕ¼µÄ±ÈÀýµÄ¹À¼ÆֵΪ0.22+0.08=0.30£¬
ÓÉÓڸùÀ¼ÆÖµ´óÓÚ25%£¬ËùÒÔ¸ÃУ¸ßÈýÄ꼶±¾´ÎÁª¿¼Êýѧ³É¼¨·ûºÏ¡°ÓÅÐ㣨80·Ö¼°80·ÖÒÔÉÏΪÓÅÐ㣩Âʲ»µÍÓÚ25%¡±µÄÒªÇó£®

µãÆÀ ±¾Ì⿼²éÁËƵÂÊͳ¼Æ±íµÄÓ¦ÓÃÎÊÌ⣬½âÌâʱӦ¸ù¾ÝͼÖÐÊý¾Ý½øÐÐÓйصļÆË㣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª£¨ax+1£©nµÄÕ¹¿ªÊ½ÖÐÓÐÁ¬ÐøÈýÏîµÄ¶þÏîʽϵÊýÖ®±ÈΪ1£º2£º3£®
£¨1£©ÇónµÄÖµ£»
£¨2£©ÈôÕ¹¿ªÊ½Öк¬xµÄÏîµÄϵÊýΪ112£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏȽ«º¯Êýy=sin2xµÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{5}$¸ö³¤¶Èµ¥Î»£¬È»ºó½«ËùµÃͼÏóºá×ø±êËõ¶Ìµ½Ô­À´µÄ$\frac{1}{2}$£¬×Ý×ø±ê²»±ä£¬´Ëʱº¯ÊýµÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®y=sin£¨4x-$\frac{2¦Ð}{5}$£©B£®y=sin£¨4x-$\frac{¦Ð}{5}$£©C£®y=sin£¨x-$\frac{2¦Ð}{5}$£©D£®y=sin£¨x-$\frac{¦Ð}{5}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®É踴Êýz1=a+2i£¬z2=4-3i£¬
£¨1£©µ±a=1ʱ£¬Çó¸´Êýz1z2µÄÄ££»
£¨2£©ÒÑÖª$\frac{{z}_{1}}{{z}_{2}}$Ϊ´¿ÐéÊý£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$ÊÇƽÃæÄÚÁ½¸ö»¥Ïà´¹Ö±µÄµ¥Î»ÏòÁ¿£¬ÇÒ£¨3$\overrightarrow{a}$-$\overrightarrow{c}$£©$•£¨4\overrightarrow{b}-\overrightarrow{c}£©$=0£¬Ôò|$\overrightarrow{c}$|µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{2}{3}$C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÉèÊýÁÐ{an}Âú×ãa1=1£¬an+1=3an+2£¬Ôò{an}µÄͨÏʽΪ£¨¡¡¡¡£©
A£®an=2•3n-1B£®an=2•3n-1-1C£®an=2•3n-1+1D£®an=2•3n+1-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªz=$\frac{i}{1+i}$£¬ÔòÔÚ¸´Æ½ÃæÄÚ£¬¸´ÊýzËù¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑ֪Բ׶SOµÄ¸ßΪ4£¬Ìå»ýΪ4¦Ð£¬Ôòµ×Ãæ°ë¾¶r=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸