【题目】已知数列满足:①();②当()时,;③当()时,,记数列的前项和为.
(1)求,,的值;
(2)若,求的最小值;
(3)求证:的充要条件是().
【答案】(1),或1,或1;(2)115;(3)证明见解析.
【解析】
(1)先根据题中条件,求出,,,再结合题意,即可得出结果;
(2)先由题意,得到,当时,,由于,所以或,分别求出,,进而可求出结果;
(3)先由,根据题中条件,求出,证明必要性;再由,求出,证明充分性即可.
(1)因,,且是自然数,;
,,且都是自然数;或;
,,且,或.
(2)由题意可得:,当时,
,由于,
所以或,
,,
,,
又,
所以
(3)必要性:若,
则:①
②
①②得:③
由于或或,且或
只有当同时成立时,等式③才成立,
;
充分性:若,由于
所以,
即,,,…,,又
所以对任意的,都有…(I)
另一方面,由,
所以对任意的,都有…(II)
,
由于.
科目:高中数学 来源: 题型:
【题目】如图1,是等边三角形,D.E分别是BC.AC上两点,且,与AD交于点H,链接CH.
(1)当时,求的值;
(2)如图2,当时,__________; __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的最小正周期为,且其图象关于直线对称,则在下面结论中正确的个数是( )
①图象关于点对称;
②图象关于点对称;
③在上是增函数;
④在上是增函数;
⑤由可得必是的整数倍.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A. B. C的对边分别为a,b,c,己知=b(c-asinC)。
(1)求角A的大小;
(2)若b+c=,,求△ABC的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的PK赛,两队各由4名选手组成,每局两队各派一名选手PK,比赛四局.除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛A队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时A队的得分高于B队的得分的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,表示当天的利润(单位:元),求的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设常数.在平面直角坐标系中,已知点,直线:,曲线:.与轴交于点、与交于点.、分别是曲线与线段上的动点.
(1)用表示点到点距离;
(2)设,,线段的中点在直线,求的面积;
(3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com