精英家教网 > 高中数学 > 题目详情
6.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
  为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持   
不支持   
合计  
(2)若对年龄在[15,20)的被调查人中随机选取两人进行调查,求恰好这两人都支持发展共享单车的概率.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;
(2)确定基本事件的个数,即可得出恰好这两人都支持发展共享单车的概率.

解答 解:(1)的2×2列联表:

年龄低于35岁年龄不低于35岁合计
支持30 10 40 
不支持 510 
合计35 15 50
K2=$\frac{50(150-50)^{2}}{35×15×40×10}$≈2.38>2.706,
∴能在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
(2)若对年龄在[15,20)的被调查人中随机选取两人进行调查,有${C}_{9}^{2}$=36种方法,恰好这两人都支持发展共享单车,有${C}_{5}^{2}$=10种方法,所以恰好这两人都支持发展共享单车的概率为$\frac{10}{36}=\frac{5}{18}$.

点评 本题考查独立性检验,考查概率的计算,考查学生的阅读与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数y=cos2x,x∈R的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=4x3+ax2+bx+5.
(Ⅰ)若函数f(x)不存在极值点,求a,b的关系式;
(Ⅱ)已知函数f(x)在$x=\frac{3}{2}$与x=-1时有极值.
(1)若函数f(x)在(0,m)上不是单调函数,求实数m的取值范围;
(2)当x∈[-2,2]时,求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知P为双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$上一点,F1、F2为双曲线的两个焦点,若∠F1PF2=60°,则△PF1F2的面积等于(  )
A.$3\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A(2,0),直线4x+3y+1=0被圆C:(x+3)2+(y-m)2=13(m<3)所截得的弦长为4$\sqrt{3}$,且P为圆C上任意一点.
(1)求|PA|的最大值与最小值;
(2)圆C与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义n!=1×2×3×…×n,例如1!=1,2!=1×2=2,执行右边的程序框图,若输入?=0.01,则输出的e精确到e的近似值为(  )
A.2.69B.2.70C.2.71D.2.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知三棱锥P-ABC,BC⊥AC,BC=AC=2,PA=PB,平面PAB⊥平面ABC,D、E、F分别是AB、PB、PC的中点.
(Ⅰ)证明:PD⊥平面ABC;
(Ⅱ)若M为BC中点,且PM⊥平面EFD,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若(x+a)7的二项展开式中,含x6项的系数为7,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若适合不等式|x2-4x+k|+|x-3|≤5的x的最大值为3,则实数k的值为8.

查看答案和解析>>

同步练习册答案