精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=(
A.
B.
C.
D.

【答案】C
【解析】解:由A,B,C成等差数列,有2B=A+C,(1) ∵A,B,C为△ABC的内角,∴A+B+C=π,(2).
由(1)(2)得B
由2a,2b,2c成等比数列,得b2=ac,
由余弦定理得,b2=a2+c2﹣2accosB,
把B= 、b2=ac代入得,a2+c2﹣ac=ac,
即(a﹣c)2=0,则a=c,从而A=C=B
∴sinAcosBsinC= =
故选:C.
【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fk(x)=ax+ka﹣x , (k∈Z,a>0且a≠1). (Ⅰ)若f1(1)=3,求f1 )的值;
(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx﹣5)<0对任意x∈[0, ]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x﹣ )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)当为自然对数的底数)时,求的极小值;

Ⅱ)若函数存在唯一零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知
(1)求tanA;
(2)若 ,且 ,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AD⊥平面PAB,△PAB是正三角形,AD=AB=2,BC=1,E是线段AB的中点

(1)求证:平面PDE⊥平面ABCD;
(2)设直线PC与平面PDE所成角为θ,求cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(UA)∪B.

查看答案和解析>>

同步练习册答案