【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则sinAcosBsinC=( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知函数fk(x)=ax+ka﹣x , (k∈Z,a>0且a≠1). (Ⅰ)若f1(1)=3,求f1( )的值;
(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx﹣5)<0对任意x∈[0, ]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.
(1)证明:BN⊥平面PCD;
(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为 ,若存在,请求出H点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin(x﹣ )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移 个单位,得到的图象对应的解析式是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,AD⊥平面PAB,△PAB是正三角形,AD=AB=2,BC=1,E是线段AB的中点
(1)求证:平面PDE⊥平面ABCD;
(2)设直线PC与平面PDE所成角为θ,求cosθ
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com