【题目】已知:在平面四边形ABCD中,,,,(如图1),若将沿对角线BD折叠,使(如图2).请在图2中解答下列问题.
(1)证明:;
(2)求三棱锥的高.
【答案】(1)证明见解析;(2)
【解析】
(1)在图1中,根据平面几何知识可得BC=1且∠CBD=90°,在图2中可以得到AC2=AB2+CB2,从而可证明BC⊥平面ABD从而可证明结论.
(2)由(1)有,用等体积法有.
证明:法1:由左图知,
在△BDC中,∠CBD=135°-45°=90°,
∠BDC=75°-45°=30°,
,所以BC=1,
又在右图中,因为AC,AB=AD,所以AC2=AB2+CB2
所以BC⊥AB
又因为∠CBD=90°,所以BC⊥平面ABD
所以BC⊥AD
法2:如右图,设BD的中点为O,连结A0,CO,因为∠A=90°,AB=AD
则
由左图知,在△BDC中,∠CBD=135°-45°=90°
∠BDC=75°-45°=30°,所以BC=1,所以
又因为AC,所以AC2=AO2+CO2
所以AO⊥CO,所以AO⊥平面BCD,所以平面ABD⊥平面BCD,又∠CBD=90°
所以BC⊥平面ABD, 所以BC⊥AD
(2)因为AB=AD,AC,CD2=BC2+BD2=4
所以CD2=AC2+AD2,所以AC⊥AD
设三棱锥B-ADC的高为h,则
科目:高中数学 来源: 题型:
【题目】如图,正方体是一个棱长为2的空心蔬菜大棚,由8个钢结构(地面没有)组合搭建而成的,四个侧面及顶上均被可采光的薄膜覆盖,已知为柱上一点(不在点、处),(),菜农需要在地面正方形内画出一条曲线将菜地分隔为两个不同的区域来种植不同品种的蔬菜以加强管理,现已知点为地面正方形内的曲线上任意一点,设、分别为在点处观测和的仰角.
(1)若,请说明曲线是何种曲线,为什么?
(2)若为柱的中点,且时,请求出点所在区域的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点是抛物线:的焦点,动直线过点且与抛物线相交于,两点.当直线变化时,的最小值为4.
(1)求抛物线的标准方程;
(2)过点,分别作抛物线的切线,,与相交于点,,与轴分别交于点,,求证:与的面积之比为定值(为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P、M、N分别是正方体的棱,AD,AB上非顶点的任意点.
①的外心必在的某一边上;
②的外心必在的内部;
③的垂心必是点A在平面PMN上的射影;
④若线段AP、AM、AN的长分别为a、b、c,则.其中( ).
A. 只有①、④正确.
B. 只有③、④正确.
C. 只有②、③、④正确.
D. 只有②、③正确.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:
参加文体活动 | 不参加文体活动 | 合计 | |
学习积极性高 | 80 | ||
学习积极性不高 | 60 | ||
合计 | 200 |
已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;
(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com