【题目】已知抛物线的标准方程为, 为抛物线上一动点, ()为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时, 的面积为18.
(1)求抛物线的标准方程;
(2)记,若值与点位置无关,则称此时的点为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥S—ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,则点A到平面SBC的距离为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·沈阳期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若=λ+μ,其中λ,μ∈R,则2λ-μ的取值范围是______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1上任意一点M到直线l:y=4的距离是它到点F(0,1)距离的2倍;曲线C2是以原点为顶点,F为焦点的抛物线.
(1)求C1,C2的方程;
(2)设过点F的直线与曲线C2相交于A,B两点,分别以A,B为切点引曲线C2的两条切线l1,l2,设l1,l2相交于点P,连接PF的直线交曲线C1于C,D两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)e-x(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)设函数φ(x)=xf(x)+tf′(x)+e-x,存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已经函数的定义域为,设
(1)试确定的取值范围,使得函数在上为单调函数
(2)求证
(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.(解答过程可参考使用以下数据)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(是自然对数的底数)
(1)若直线为曲线的一条切线,求实数的值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com