精英家教网 > 高中数学 > 题目详情
8.已知双曲线的焦点在x轴上,焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线x-2y+1=0平行,则双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

分析 设双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),由2c=2$\sqrt{5}$,则c=$\sqrt{5}$,由双曲线的一条渐近线与直线x-2y+1=0平行,即$\frac{b}{a}$=$\frac{1}{2}$,c2=a2+b2,即可求得a和b的值,即可求得双曲线的标准方程.

解答 解:由题意可知:设双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0),由2c=2$\sqrt{5}$,则c=$\sqrt{5}$,
双曲线的一条渐近线与直线x-2y+1=0平行,即$\frac{b}{a}$=$\frac{1}{2}$,
由c2=a2+b2,解得:a=2,b=1,
∴双曲线的标准方程为:$\frac{{x}^{2}}{4}-{y}^{2}=1$,
故选A.

点评 本题考查双曲线的标准方程及简单几何性质,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,若z=a(4x+2y)+b(a>0,b>0)的最大值为7,则$\frac{6}{a}$+$\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程为(  )
A.y2=±2$\sqrt{2}$xB.y2=±2xC.y2=±4xD.y2=±4$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x≤1\\ y≥-1\end{array}\right.$,若m=2x-y,则m的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点D(0,1),一个焦点与短轴的两端点连线互相垂直.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过$M(0,-\frac{1}{3})$的直线l交椭圆C于A,B两点,判断点D与以AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列直线中,与直线2x+y+1=0平行且与圆x2+y2=5相切的是(  )
A.2x+y+5=0B.x-2y+5=0C.$2x+y+5\sqrt{5}=0$D.$x-2y+5\sqrt{5}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知抛物线y2=2px(p>0)的焦点在直线2x-y-4=0上,求p的值;
(2)已知双曲线的渐近线方程为$y=±\frac{3}{4}x$,准线方程为$x=±\frac{16}{5}$,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(I)化简求值:${log_{\frac{1}{3}}}\sqrt{27}+lg25+lg4+{7^{-{{log}_7}2}}+{(-0.98)^0}$;
(II)已知角α的终边上一点$P(\sqrt{2},-\sqrt{6})$,求值:$\frac{{cos(\frac{π}{2}+α)cos(2π-α)+sin(-α-\frac{π}{2})cos(π-α)}}{{sin(π+α)cos(\frac{π}{2}-α)}}$.

查看答案和解析>>

同步练习册答案