精英家教网 > 高中数学 > 题目详情

证明:以抛物线焦点弦为直径的圆与抛物线的准线相切

证明略


解析:

为抛物线的焦点弦,F为抛物线的焦点,点分别是点在准线上的射影,弦的中点为M,则,点M到准线的距离为以抛物线焦点弦为直径的圆总与抛物线的准线相切

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量
a
=(-2,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.
(Ⅰ)若k1>0,k2>0,证明:
FM
FN
<2p2

(Ⅱ)若点M到直线l的距离的最小值为
7
5
5
,求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)求⊙O2半径的最大值;
(Ⅱ)当⊙O2半径最大时,试判断⊙O1和⊙O2的位置关系;
(Ⅲ)⊙O2半径最大时,如果⊙O1和⊙O2相交.
(1)求⊙O1和⊙O2公共弦所在直线l1的方程;
(2)设直线l1交x轴于点F,抛物线C以坐标原点O为顶点,以F为焦点,直线l2:y=k(x-3)(k≠0)与抛物线C相交于A、B两点,证明:
OA
OB
为定值.

查看答案和解析>>

同步练习册答案