精英家教网 > 高中数学 > 题目详情
已知直线l:mx-2y+2m=0(m∈R)和椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),椭圆C的离心率为
2
2
,连接椭圆的四个顶点形成四边形的面积为2
2

(I)求椭圆C的方程;
(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;
(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.
分析:(I)直接利用离心率为
2
2
,以及连接椭圆的四个顶点形成四边形的面积为2
2
列出关于a,b,c方程,求出a,b,c即可得到椭圆方程;
(II)先求出直线所过的顶点坐标,再联立直线方程与椭圆方程,利用判别式大于0即可求实数k的取值范围;
(Ⅲ)先求出点P的坐标(0,m),设出点M,根据两点间的距离公式求出|PM|2的表达式,根据M为椭圆C上的动点的限制对m分情况讨论即可求出f(m)的表达式.
解答:解:(I)由离心率e=
2
2
,得b=c=
2
2
a

又因为2ab=2
2
,所以a=
2
,b=1
,即椭圆标准方程为
x2
2
+y2=1
.(4分)
(II)由l:mx-2y+2m=0经过定点Q(-2,0),则直线l′:y=k(x+2),
由 
y=k(x+2)
x2
2
+y2=1
有(2k2+1)x2+8k2x+8k2-2=0.
所以△=64k4-8(2k2+1)(4k2-1)>0,可化为 2k2-1<0
解得-
2
2
<k<
2
2
. (8分)
(Ⅲ) 由l:mx-2y+2m=0,设x=0,则y=m,所以P(0,m).
设M(x,y)满足
x2
2
+y2=1

则|PM|2=x2+(y-m)2=2-2y2+(y-m )2=-y2-2my+m2+2=-(y+m)2+2m2+2,
因为-1≤y≤1,所以
当|m|>1时,|MP|的最大值f(m)=1+|m|;
当|m|≤1时,|MP|的最大值f(m)=
2m2+2

所以f(m)=
1+|m|m>1
2m2+2
|m|≤1
.(12分)
点评:本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查综合分析与运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:mx-y-2m-1=0,m是实数.
(I)直线l恒过定点P,求定点P的坐标;
(II)若原点到直线l的距离是2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长为2.
(Ⅰ)求出m与n的关系式;
(Ⅱ)若直线l与直线2x+y+5=0平行,求直线l的方程;
(Ⅲ)若点P是可行域
2x+y-8≥0
x-y-2≥0
x≤4
内的一个点,是否存在实数m,n使得|OA|+|OB|的最小值为2
6
,且直线l经过点P?若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx+y-m=0 交圆C:x2+y2-4x-2y=0于A,B两点,当|AB|最短时,直线l的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xoy中,已知“葫芦”曲线C由圆弧C1与圆弧C2相接而成,两相接点M,N均在直线y=-
2
3
上.圆弧C1所在圆的圆心是坐标原点O,半径为r1=2;圆弧C2过点A(0,-6
2
).
(Ⅰ)求圆弧C2的方程;
(Ⅱ)已知直线l:mx-y-3
2
=0与“葫芦”曲线C交于E,F两点.当|EF|=4+4
2
时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5交于A、B两点;
(Ⅰ)若|AB|=
17
,求直线l的倾斜角;
(Ⅱ)求弦AB的中点M的轨迹方程;
(Ⅲ)圆C上是否存在一点P使得△ABP为等边三角形?若存在,求出P点坐标;不存在,请说明理由.

查看答案和解析>>

同步练习册答案