【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,
续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | |
频数 | 120 | 100 | 60 | 60 | 40 | 20 |
(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;
(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.
求的估计值;
(III)求续保人本年度的平均保费估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 , 且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 , 并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是 ,丙、丁考试合格的概率都是 ,且考试是否合格互不影响.
(1)求丙、丁未签约的概率;
(2)记签约人数为 X,求 X的分布列和数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x.
(1)画出f(x)的简图,并求f(x)的解析式;
(2)利用图象讨论方程f(x)=k的根的情况.(只需写出结果,不要解答过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数f(x)=loga(2+x)﹣loga(2﹣x)(a>0且a≠1)
(Ⅰ)求f(x)定义域;
(Ⅱ)判断f(x)的奇偶性,并说明理由;
(Ⅲ)求使f(x)>0的x的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com