A. | 1 | B. | 2 | C. | 5 | D. | 10 |
分析 根据向量加法的三角形法则,勾股定理,向量模的定义可得$\frac{|\overrightarrow{PB}{|}^{2}+|\overrightarrow{PD}{|}^{2}}{|\overrightarrow{PA}{|}^{2}}$=1+$\frac{{\;}^{\;}{\left|\overrightarrow{PC}\stackrel{\;}{\;}\right|}^{2}}{|\overrightarrow{PA}{|}^{2}}$,结合点P满足$\overrightarrow{AP}=λ\overrightarrow{AC}$,$λ∈[\frac{1}{4},1]$,可得$\frac{|\overrightarrow{PB}{|}^{2}+|\overrightarrow{PD}{|}^{2}}{|\overrightarrow{PA}{|}^{2}}$的范围.
解答 解:$\frac{|\overrightarrow{PB}{|}^{2}+|\overrightarrow{PD}{|}^{2}}{|\overrightarrow{PA}{|}^{2}}$=$\frac{{(\overrightarrow{PB})}^{2}+{(\overrightarrow{PD})}^{2}}{|\overrightarrow{PA}{|}^{2}}$=$\frac{{(\overrightarrow{PA}+\overrightarrow{AB})}^{2}+{(\overrightarrow{PA}+\overrightarrow{AD})}^{2}}{|\overrightarrow{PA}{|}^{2}}$=$\frac{{2{\overrightarrow{PA}}^{2}{+2\overrightarrow{PA}•(\overrightarrow{AB}+\overrightarrow{AD})+(}^{\;}\overrightarrow{AB})}^{2}+{(\overrightarrow{AD})}^{2}}{|\overrightarrow{PA}{|}^{2}}$=$\frac{{2{\overrightarrow{PA}}^{2}+2\overrightarrow{PA}•\overrightarrow{AC}+}^{\;}{(\overrightarrow{AC})}^{2}}{|\overrightarrow{PA}{|}^{2}}$=1+$\frac{{\;}^{\;}{(\overrightarrow{PA}\overrightarrow{+AC})}^{2}}{|\overrightarrow{PA}{|}^{2}}$=1+$\frac{{\;}^{\;}{(\overrightarrow{PC}\stackrel{\;}{\;})}^{2}}{|\overrightarrow{PA}{|}^{2}}$=1+$\frac{{\;}^{\;}{\left|\overrightarrow{PC}\stackrel{\;}{\;}\right|}^{2}}{|\overrightarrow{PA}{|}^{2}}$,
∵$\overrightarrow{AP}=λ\overrightarrow{AC}$,$λ∈[\frac{1}{4},1]$,
∴$\frac{{\;}^{\;}{\left|\overrightarrow{PC}\stackrel{\;}{\;}\right|}^{2}}{|\overrightarrow{PA}{|}^{2}}$∈[0,9],
故$\frac{|\overrightarrow{PB}{|}^{2}+|\overrightarrow{PD}{|}^{2}}{|\overrightarrow{PA}{|}^{2}}$∈[1,10],
即$\frac{|\overrightarrow{PB}{|}^{2}+|\overrightarrow{PD}{|}^{2}}{|\overrightarrow{PA}{|}^{2}}$的最大值为10,
故选:D.
点评 本题考查的知识点是向量加法的三角形法则,勾股定理,向量模的定义,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com