精英家教网 > 高中数学 > 题目详情
14.已知M是椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上的点,F1,F2为椭圆的焦点,且∠F1MF2=$\frac{π}{2}$,求△F1MF2的面积.

分析 由椭圆的定义可得,|MF1|+|MF2|=2a=2$\sqrt{5}$,结合MF1⊥MF2,利用勾股定理可得,|MF1|2+|MF2|2=|F1F2|2=4,配方再由三角形的面积S=$\frac{1}{2}$|MF1|•|MF2|,从而可求答案.

解答 解:椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的a=$\sqrt{5}$,b=2,c=1,
由椭圆的定义可得,|MF1|+|MF2|=2a=2$\sqrt{5}$,
∵∠F1MF2=$\frac{π}{2}$,
∴MF1⊥MF2
在Rt△MF1F2中,由勾股定理可得,
|MF1|2+|MF2|2=|F1F2|2=4,
即(|MF1|+|MF2|)2-2|MF1|•|MF2|=4,
∴|MF1|•|MF2|=8,
则三角形的面积S=$\frac{1}{2}$|MF1|•|MF2|=$\frac{1}{2}$×8=4.

点评 本题主要考查了椭圆的定义的简单应用,解题的关键是对已知平方式的变形(|MF1|+|MF2|)2-2|MF1|•|MF2|=4,求得|MF1|•|MF2|=8,利用整体思想求解三角形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数y=f(x)的定义域是[a-2,2a+1],且f(x)是奇函数,则a=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知log52=0.6,求log23•log34•log45之值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+2x•tanθ-1,x∈[-$\sqrt{3}$,$\sqrt{3}$].
(1)当θ=-$\frac{π}{6}$时,求f(x)的最大值和最小值.
(2)求使f(x)在区间[-1,$\sqrt{3}$]上是单调函数的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(2ωx+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$.
(1)求ω;
(2)若将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到导函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解关于x的不等式:|x2-3x-6|<2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x+a1nx在x=1处的切线l与直线x+2y=0垂直.
(1)求实数a的值;
(2)已知函数g(x)=(2-m)f(x)+(3m-2)x+$\frac{1}{x}$,当m<0时,讨论g(x)的单调性;
(3)若存在实数t∈[0,2],使得对任意的x∈[1,k],不等式(x3-6x2+3x+t)ex≤f(x)-lnx恒成立,e为自然对数的底数,求正整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=3cos(2x+$\frac{π}{7}$)-2的最大值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={x|x2+2x-3=0|与B={x|ax+1=0|,试写出B⊆A的一个充分不必要条件.

查看答案和解析>>

同步练习册答案