精英家教网 > 高中数学 > 题目详情

二次函数y=ax2+bx+c的系数abc,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?

满足题设的抛物线共有CCAA=144条.


解析:

由图形特征分析,a>0,开口向上,坐标原点在内部f(0)=c<0;a<0,开口向下,原点在内部f(0)=c>0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部af(0)=ac<0,则确定抛物线时,可先定一正一负的ac,再确定b,故满足题设的抛物线共有CCAA=144条.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、二次函数y=ax2+bx+c中,a•c<0,则函数的零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列变量之间是函数关系的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数y=ax2+4x-2有零点,则实数a的取值范围是
a≥-2
a≥-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设b>0,二次函数y=ax2+bx+a2-1的图象为下列图象之一:则a的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=ax2+bx+c(x∈R)的部分对应值如下表
x -3 -2 -1 0 1 2 3 4
y 6 0 -4 -6 -6 -4 0 6
(1)不等式ax2+bx+c>0的解集是多少?
(2)不等式cx2+bx+c>0的解集是多少?

查看答案和解析>>

同步练习册答案