【题目】求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆C的方程.
【答案】x2+y2-4x+4y-17=0
【解析】试题分析:解法一:先两圆方程相减,得到公共弦方程,再联立直线和圆的方程求出公共点坐标,进而求出圆的半径和圆心,写出圆的方程即可;解法二:先两圆方程相减,得到公共弦方程,再利用圆系方程进行求解.
试题解析:解法一:联立两圆方程,
相减得公共弦所在直线方程为4x+3y-2=0.
再由,
联立得两圆交点坐标(-1,2)、(5,-6).
∵所求圆以公共弦为直径,
∴圆心C是公共弦的中点(2,-2),半径为,
∴圆C的方程为(x-2)2+(y+2)2=25.
解法二:由解法一可知公共弦所在直线方程为4x+3y-2=0.设所求圆的方程为x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数).
可求得圆心.
∵圆心C在公共弦所在直线上,
∴,
解得λ=.
∴圆C的方程为x2+y2-4x+4y-17=0.
科目:高中数学 来源: 题型:
【题目】已知点与点的距离比它的直线的距离小2.
(1)求点的轨迹方程;
(2)是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出该点坐标;若不经过,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面与平面交于直线是平面内不同的两点,是平面内不同的两点,且不在直线上,分别是线段的中点,下列命题中正确的个数为( )
①若与相交,且直线平行于时,则直线与也平行;
②若是异面直线时,则直线可能与平行;
③若是异面直线时,则不存在异于的直线同时与直线都相交;
④两点可能重合,但此时直线与不可能相交
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点.
(1)求该椭圆的离心率;
(2)设直线AB和AC分别与直线x=4交于点M,N,问:x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1:x2+y2-4x-2y-5=0与圆C2:x2+y2-6x-y-9=0.
(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;
(3)在平面上找一点P,过P点引两圆的切线并使它们的长都等于.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求证:PD 平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列几个命题
①方程有一个正实根,一个负实根,则;
②函数是偶函数,但不是奇函数;
③命题“若,则”的否命题为“若,则”;
④命题“,使得”的否定是“,都有”;
⑤“”是“”的充分不必要条件.
正确的是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com