精英家教网 > 高中数学 > 题目详情

【题目】求以圆C1x2y212x2y130和圆C2x2y212x16y250的公共弦为直径的圆C的方程.

【答案】x2y24x4y170

【解析】试题分析:解法一:先两圆方程相减,得到公共弦方程,再联立直线和圆的方程求出公共点坐标,进而求出圆的半径和圆心,写出圆的方程即可;解法二:先两圆方程相减,得到公共弦方程,再利用圆系方程进行求解.

试题解析:解法一:联立两圆方程

相减得公共弦所在直线方程为4x3y20.

再由

联立得两圆交点坐标(1,2)(5,-6)

所求圆以公共弦为直径,

圆心C是公共弦的中点(2,-2),半径为

C的方程为(x2)2(y2)225.

解法二:由解法一可知公共弦所在直线方程为4x3y20.设所求圆的方程为x2y212x2y13λ(x2y212x16y25)0(λ为参数)

可求得圆心

圆心C在公共弦所在直线上,

解得λ.

C的方程为x2y24x4y170.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点与点的距离比它的直线的距离小2

1)求点的轨迹方程;

2是点轨迹上互相垂直的两条弦,问:直线是否经过轴上一定点,若经过,求出该点坐标;若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面与平面交于直线是平面内不同的两点,是平面内不同的两点,且不在直线上,分别是线段的中点,下列命题中正确的个数为( )

①若相交,且直线平行于时,则直线也平行;

②若是异面直线时,则直线可能与平行;

③若是异面直线时,则不存在异于的直线同时与直线都相交;

两点可能重合,但此时直线不可能相交

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于BC两点.

(1)求该椭圆的离心率;

(2)设直线ABAC分别与直线x=4交于点MN,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1x2y2-4x-2y-5=0与圆C2x2y2-6xy-9=0.

(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;

(3)在平面上找一点P,过P点引两圆的切线并使它们的长都等于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求证:PD 平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中,a1=2,a3+2a2a4的等差中项.

(1)求数列的通项公式;

(2)log2,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题

①方程有一个正实根,一个负实根,则

②函数是偶函数,但不是奇函数;

③命题,则的否命题为,则”;

④命题,使得的否定是,都有”;

的充分不必要条件.

正确的是__________

查看答案和解析>>

同步练习册答案