精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(1)求证:函数是增函数;

(2)若函数上的值域是),求实数的取值范围;

(3)若存在,使不等式成立,求实数的取值范围.

【答案】(1)证明见解析

(2)

(3)

【解析】

(1)设,然后利用单调性的定义证明.

(2)由(1)得,函数是增函数,利用转化为方程运用韦达定理即可.

(3)把不等式变形为,然后定义新函数并运用二次函数的性质即可得到答案.

(1)设,则

由于,故

因此,即

故该函数为增函数.

(2)由(1)得,函数是增函数,则,即

所以 可视为方程的两个不同的正实数根

,解得,即实数的取值范围是.

(3)不等式,即

因为,上述不等式化为

,则其图象对称轴为,讨论两种情况:

,解得

解得:.

综上,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车行业是碳排放量比较大的行业之一,欧盟从2012年开始就对二氧化碳排放量超过

型汽车进行惩罚,某检测单位对甲、乙两类型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:):

80

110

120

140

150

100

120

100

160

经测算发现,乙类型品牌汽车二氧化碳排放量的平均值为.

(Ⅰ)从被检测的5辆甲类型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过的概率是多少?

(Ⅱ)求表中,并比较甲、乙两类型品牌汽车二氧化碳排放量的稳定性.

,其中,表示的平均数,表示样本数量,表示个体,表示方差)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从学生会宣传部6名成员(其中男生4人,女生2)中,任选3人参加某省举办的我看中国改革开放三十年演讲比赛活动.

(1)设所选3人中女生人数为ξ,求ξ的分布列;

(2)求男生甲或女生乙被选中的概率;

(3)男生甲被选中为事件A女生乙被选中为事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数且当x>0f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)画出f(x)的图像并指出f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地震、海啸、洪水、森林大火等自然灾害频繁出现,紧急避险常识越来越引起人们的重视.某校为了了解学生对紧急避险常识的了解情况,从高一年级和高二年级各选取100名同学进行紧急避险常识知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按分组,得到的频率分布直方图.

(Ⅰ)根据成绩频率分布直方图分别估计参加这次知识竞赛的两个年级学生的平均成绩;

(Ⅱ)完成下面列联表,并回答是否有的把握认为“两个年级学生对紧急避险常识的了解有差异”?

成绩小于60分人数

成绩不小于60分人数

合计

高一年级

高二年级

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�