【题目】已知函数().
(1)求证:函数是增函数;
(2)若函数在上的值域是(),求实数的取值范围;
(3)若存在,使不等式成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】人类的四种血型与基因类型的对应为:O型的基因类型为ii,A型的基因类型为ai或aa,B型的基因类型为bi或bb,AB型的基因类型为ab,其中a和b是显性基因,i是隐性基因.一对夫妻的血型一个是A型,一个是B型,请确定他们的子女的血型是0,A,B或AB型的概率,并填写下表:
父母血型的基因类型组合 | 子女血型的概率 | |||
O | A | B | AB | |
ai×bi | ||||
ai×bb | 0 | 0 | ||
aa×bi | 0 | 0 | ||
aa×bb | 0 | 0 | 0 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车行业是碳排放量比较大的行业之一,欧盟从2012年开始就对二氧化碳排放量超过
的型汽车进行惩罚,某检测单位对甲、乙两类型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | 100 | 160 |
经测算发现,乙类型品牌汽车二氧化碳排放量的平均值为.
(Ⅰ)从被检测的5辆甲类型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过的概率是多少?
(Ⅱ)求表中,并比较甲、乙两类型品牌汽车二氧化碳排放量的稳定性.
,其中,表示的平均数,表示样本数量,表示个体,表示方差)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左焦点左顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数满足对于任意实数,都有,且当时,,.
(1)判断的奇偶性并证明;
(2)判断的单调性,并求当时,的最大值及最小值;
(3)解关于的不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)画出f(x)的图像,并指出f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,已知直线的极坐标方程是,圆的参数方程为(为参数,).
(1)若直线与圆有公共点,求实数的取值范围;
(2)当时,过点且与直线平行的直线交圆于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】地震、海啸、洪水、森林大火等自然灾害频繁出现,紧急避险常识越来越引起人们的重视.某校为了了解学生对紧急避险常识的了解情况,从高一年级和高二年级各选取100名同学进行紧急避险常识知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按,分组,得到的频率分布直方图.
(Ⅰ)根据成绩频率分布直方图分别估计参加这次知识竞赛的两个年级学生的平均成绩;
(Ⅱ)完成下面列联表,并回答是否有的把握认为“两个年级学生对紧急避险常识的了解有差异”?
成绩小于60分人数 | 成绩不小于60分人数 | 合计 | |
高一年级 | |||
高二年级 | |||
合计 |
附:
临界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com