精英家教网 > 高中数学 > 题目详情
已知
a
=(sinx,-cosx),
b
=(
3
cosx,cosx)
,函数f(x)=
a
b
-
1
2
,x∈R.
(1)求函数f(x)的最大值和最小正周期;
(2)设△ABC的内角A,B,C的对边分别a,b,c且c=3,f(C)=0,若sin(A+C)=2sinA,求a,b的值.
分析:(1)利用向量的数量积公式,结合二倍角公式,辅助角公式,化简函数,即可求函数f(x)的最大值和最小正周期;
(2)先求C,再根据sin(A+C)=2sinA,求A,可得三角形为直角三角形,从而可得结论.
解答:解:(1)∵
a
=(sinx,-cosx),
b
=(
3
cosx,cosx)

f(x)=
a
b
-
1
2
=
3
sinxcosx-cos2x-
1
2
=
3
2
sin2x-
1
2
cos2x-1
=sin(2x-
π
6
)-1
∴sin(2x-
π
6
)=1时,函数f(x)的最大值为0
函数的最小正周期为T=
2
=π;
(2)∵f(C)=0,∴sin(2C-
π
6
)-1=0,∴C=
π
3

∵sin(A+C)=2sinA,∴sin(A+
π
3
)=2sinA,∴tanA=
3
3
,∴A=
π
6

∴B=
π
2

∵c=3,
∴a=3tan
π
6
=
3
,b=2
3
点评:本题考查向量的数量积运算,考查三角函数的化简,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sinx,1)
b
=(2cosx,2+cos2x)
,函数f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)的最大值及取得最大值的自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx)
b
=(
3
cosx,cosx)
,设函数f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及单调递增区间;
(2)当x∈[-
π
6
12
]
时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函数f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其图象对称中心的坐标;
(2)当0≤x≤
π
2
时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)已知
a
=(sinx,1)
b
=(cosx,-
1
2
)
,函数f(x)=
a
•(
a
-
b
)
,那么下列四个命题中正确命题的序号是
②③④
②③④

①f(x)是周期函数,其最小正周期为2π.
②当x=
π
8
时,f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函数f(x)的一个单调递增区间;
④点(-
π
8
,2)是函数f(x)的一个对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx),
b
=(
3
cosx,cosx)
,设函数f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及单调递增区间;
(2)当x∈[-
π
6
12
]
时,求f(x)的最值并指出此时相应的x的值.

查看答案和解析>>

同步练习册答案