精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2-2x
ex
,下列说法中正确的有
(1)(3)
(1)(3)

(1)f(x)在R上有两个极值点;       
(2)f(x)在x=2+
2
处取得最大值;
(3)f(x)在x=2-
2
处取得最小值; 
(4)f(x)在x=2+
2
处取得极小值
(5)函数f(x)在R上有三个不同的零点.
分析:依题意,可求得f′(x)=
-x2+4x-2
ex
,利用f′(x)=0可判断(1),利用f(x)=0可判断(5),利用导数判断该函数的单调情况,从而可判断(2)(3)(4).
解答:解:∵f′(x)=
(2x-2)ex-(x2-2x)ex
e2x
=
-x2+4x-2
ex

∴由f′(x)=0得:x=2-
2
或x=2+
2

∴(1)f(x)在R上有两个极值点,正确;
又当x=0或x=2时,f(x)=0,
∴函数f(x)在R上有两个不同的零点,故(5)错误;
由f′(x)>0得2-
2
<x<2+
2

由f′(x)<0得x<2-
2
或x>2+
2

∴函数f(x)=
x2-2x
ex
在(-∞,2-
2
),(2+
2
,+∞)上单调递减,在(2-
2
,2+
2
)上单调递增;
∴f(x)在x=2-
2
处取得极小值,在x=2+
2
处取得极大值,故(4)错误;
又f(2-
2
)<0,f(2+
2
)>0,
∴f(x)在x=2-
2
处取得最小值,f(x)在x=2+
2
取不到最大值,故(3)正确,(2)错误;
综上所述,(1)(3)正确.
故答案为:(1)(3).
点评:本题考查利用导数研究函数的极值,考查根的存在性及根的个数判断,考查分析与运算的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案