精英家教网 > 高中数学 > 题目详情

【题目】在正方体中, 在线段上运动且不与 重合,给出下列结论:

平面

二面角的大小随点的运动而变化;

三棱锥在平面上的投影的面积与在平面上的投影的面积之比随点的运动而变化;

其中正确的是(

A. ①③④ B. ①③

C. ①②④ D. ①②

【答案】D

【解析】对于①,连结,则,因为平面 平面,所以,故可证平面,由平面,可证 ,故①正确;对于②,连结 ,则 ,即,因为平面 平面 易证平面,由平面平面,所以可证平面,故②正确;对于③,当在直线上运动时, 的轨迹是平面 的轨迹是平面即二面角的大小不受影响,故③错误;对于④,由于三棱锥在平面与在平面上投影的等底的三角形,且高相等,所以三棱锥在平面上投影的面积与在平面上投影的面积之比不变,故④错误.

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面积S= sinBsinC,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点及椭圆过点的动直线与椭圆相交于 两点.

1)若线段中点的横坐标是求直线的方程;

(2)设点的坐标为求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆ab>0的离心率,过点的直线与原点的距离为

1求椭圆的方程

2已知定点,若直线与椭圆交于CD两点是否存在k的值,使以CD为直径的圆过E点?请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,由甲、乙两人这几场比赛得分的中位数之和是(
A.65
B.64
C.63
D.62

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面底面的中点,侧棱

(1)求证:平面

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据

房屋面积(平方米)

115

110

80

135

105

销售价格(万元)

24.8

21.6

18.4

29.2

22


(1)画出散点图
(2)求线性回归方程
(3)根据(2)的结果估计房屋面积为150平方米时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分12分已知极坐标系的极点与直角坐标系的原点重合极轴与直角坐标系的x轴的正半轴重合且两个坐标系的单位长度相同已知直线l的参数方程为t为参数曲线C的极坐标方程为

若直线l的斜率为-1求直线l与曲线C交点的极坐标

若直线l与曲线C相交弦长为求直线l的参数方程标准形式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱底面 是棱的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求平面与平面所成二面角的余弦值.

查看答案和解析>>

同步练习册答案