精英家教网 > 高中数学 > 题目详情
4.已知命题p:存在x∈R,使得2x=1,则¬p是(  )
A.存在x∉R,2x≠1B.任意x∉R,2x≠1C.存在x∈R,2x≠1D.任意x∈R,2x≠1

分析 直接利用特称命题 的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,
所以命题p:存在x∈R,使得2x=1,则¬p是任意x∈R,2x≠1,
故选:D

点评 本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.一个学校共有2000名学生,含初一、初二、初三、高一、高二、高三六个年级,要采用分层抽样方法从全部学生中抽取一个容量为50的样本,已知高一有600名学生,那么从高一年级抽取的学生人数是15人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,两个顶点分别为A(-a,0),B(a,0),点M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,且点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线BC,BD的斜率分别为k1,k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
(1)若B=∅,求m的取值范围;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是正方形,PD=AB=2,E为PC中点.求二面角E-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-$\frac{4}{3}$.
(1)求函数的解析式.
(2)判断函数的极值点并求极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中,正确的是(  )
A.经过不同的三点有且只有一个平面
B.分别在两个平面内的两条直线是异面直线
C.垂直于同一个平面的两条直线平行
D.垂直于同一个平面的两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(理)设F1,F2分别是双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦点,若点P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=(  )
A.$\sqrt{13}$B.2$\sqrt{17}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两条不平行的直线,它们的平行投影不可能是(  )
A.一点和一条直线B.两条平行直线C.两个点D.两条相交直线

查看答案和解析>>

同步练习册答案