【题目】如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
【答案】(1)详见解析(2)详见解析
【解析】
试题分析:(1)欲证GH∥平面CDE,根据直线与平面平行的判定定理可知只需证GH与平面CDE内一直线平行,而G是AE,DF的交点,G是AE中点,又H是BE的中点,则GH∥AB,而AB∥CD,则GH∥CD,CD平面CDE,GH平面CDE,满足定理所需条件.(2)利用线面垂直的判定定理证明ED⊥面ABCD,即可证明面AFED⊥面ABCD
试题解析:(1)∵四边形ADEF是正方形,G是AE,DF的交点,
∴G是AE中点,
又H是BE的中点,
∴△EAB中,GH∥AB,
∵ABCD为平行四边形
∴AB∥CD
∴GH∥CD,
又∵CD平面CDE,GH平面CDE
∴GH∥平面CDE
(2)∵BD⊥平面CDE,
∴BD⊥ED,
∵四边形AFED为正方形,∴ED⊥AD,
∵AD∩BD=D,ED⊥面ABCD,
∵ED面AFED,
∴面AFED⊥面ABCD.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足,求数列的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设的值为1,根据已知条件,计算出_________, __________, _________.
猜想: _______.
然后用数学归纳法证明.证明过程如下:
①当时,________________,猜想成立
②假设(N*)时,猜想成立,即_______.
那么,当时,由已知,得_________.
又,两式相减并化简,得_____________(用含的代数式表示).
所以,当时,猜想也成立.
根据①和②,可知猜想对任何N*都成立.
思路2:先设的值为1,根据已知条件,计算出_____________.
由已知,写出与的关系式: _____________________,
两式相减,得与的递推关系式: ____________________.
整理: ____________.
发现:数列是首项为________,公比为_______的等比数列.
得出:数列的通项公式____,进而得到____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量的取值为不大于的非负整数值,它的分布列为:
0 | 1 | 2 | n | ||
其中()满足: ,且.
定义由生成的函数,令.
(I)若由生成的函数,求的值;
(II)求证:随机变量的数学期望, 的方差;
()
(Ⅲ)现投掷一枚骰子两次,随机变量表示两次掷出的点数之和,此时由生成的函数记为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的,是面积为200平方米的十字形地带.计划在正方MNPQ上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.
(1)设总造价是S元,AD长为x米,试建立S关于x的函数关系式;
(2)当x为何值时,S最小?并求出最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com