【题目】如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、
(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C: + =1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为 ,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2 ,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的有 .
①常数数列既是等差数列也是等比数列;
②在△ABC中,若sin2A+sin2B=sin2C,则△ABC为直角三角形;
③若A,B为锐角三角形的两个内角,则tanAtanB>1;
④若Sn为数列{an}的前n项和,则此数列的通项an=Sn﹣Sn﹣1(n>1).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大学生村官王善良落实政府“精准扶贫”精神,帮助贫困户张三用9万元购进一部节能环保汽车,用于出租.假设第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该车每年的运营收入均为11万元.若该车使用了n(n∈N*)年后,年平均盈利额达到最大值,则n等于(注:年平盈利额=(总收入﹣总成本)× )( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数φ(x)=a2x﹣ax(a>0,a≠1).
(1)求函数φ(x)在[﹣2,2]上的最大值;
(2)当a= 时,φ(x)≤t2﹣2mt+2对所有的x∈[﹣2,2]及m∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P为△ABC所在平面外一点,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,则H为△ABC的( )
A.重心
B.垂心
C.外心
D.内心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E点做EF⊥PB交PB于点F.求证:
(1)PA∥平面DEB;
(2)PB⊥平面DEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com