精英家教网 > 高中数学 > 题目详情
18.下列关于空间向量的运算法则正确的是(  )
①$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{b}$+$\overrightarrow{a}$
②($\overrightarrow{a}$+$\overrightarrow{b}$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow{b}$+$\overrightarrow{c}$)
③(λ+μ)$\overrightarrow{a}$=λ$\overrightarrow{a}$+μ$\overrightarrow{a}$(λ,μ∈R)
④λ($\overrightarrow{a}$+$\overrightarrow{b}$)=λ$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R)
A.1B.2C.3D.4

分析 根据向量运算的几何意义,逐一分析四个答案中的运算律是否满足向量运算,综合可得答案.

解答 解:向量加法满足交换律:故①$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{b}$+$\overrightarrow{a}$正确;
向量加法满足结合律:故②($\overrightarrow{a}$+$\overrightarrow{b}$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow{b}$+$\overrightarrow{c}$)正确;
数乘向量满足分配律:故③(λ+μ)$\overrightarrow{a}$=λ$\overrightarrow{a}$+μ$\overrightarrow{a}$(λ,μ∈R)正确;
④λ($\overrightarrow{a}$+$\overrightarrow{b}$)=λ$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R)正确;
故正确的命题有4个,
故选:D.

点评 本题以命题的真假判断与应用为载体,考查了向量的基本运算律,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设全集S={ a、b、c、d、e},M={ a、c、d},N={ b、d、e},那么(∁SM )∩(∁SN )等于(  )
A.B.{d}C.{ a、c }D.{ b、e}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥1}\\{3x+y≤3}\\{x≥0}\end{array}}\right.$,则目标函数z=2x+y的最小值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在正方体OADB-CA′D′B′中,点E是AB与OD的交点,M是OD′与CE的交点,
(1)试分别用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$表示向量$\overrightarrow{OD′}$和$\overrightarrow{OM}$;
(2)$\overrightarrow{OI}$,$\overrightarrow{OJ}$,$\overrightarrow{OK}$分别为$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$方向上的单位向量,试用$\overrightarrow{OI}$,$\overrightarrow{OJ}$,$\overrightarrow{OK}$表示$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,满足点P(an,an+1)是函数f(x)=3x图象上的点,且a1=3.
(1)求{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆M与x轴相切且过点(0,2),直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=2+\sqrt{3}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程与圆M的圆心的轨迹方程;
(2)P为直线l上任意一点,Q为C上的任意一点,求P、Q两点间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα+cosα=$\frac{4}{5}$,且$\frac{3π}{2}$<α<2π,计算:
(1)sinα-cosα;
(2)$\frac{1}{co{s}^{2}α}$-$\frac{1}{si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x+2y=2,则$\sqrt{{x}^{2}+{y}^{2}}$+y的最小值为$\frac{\sqrt{155}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=1,且an=2an-1+2n(n≥2,n∈N*
(1)求a2,a3
(2)求证:数列$\left\{{\frac{a_n}{2^n}}\right\}$是等差数列;
(3)求出数列{an}的前n项之和Sn

查看答案和解析>>

同步练习册答案