【题目】已知函数 ,
(1)若曲线在点处的切线为,求的值;
(2)讨论函数的单调性;
(3)设函数,若至少存在一个,使得成立,求实数的取值范围.
【答案】(1);
(2)当的单调增区间为,
当时,∴的单调增区间为,,的单调减区间为
当时,∴的单调增区间为,,的单调减区间为.
(3)
【解析】
试题分析:(1)的定义域为,,求出,,可得到的值,可得的值;(2),分,,三种情况讨论的单调性;(3)若至少存在一个,使得,∴,
当时,,∴有解,令,讨论函数的性质,可得到
实数的取值范围.
试题解析:(1)的定义域为,,
∴,
解得,∴.
(2),
当时,,∴的单调增区间为
当时,由,
∴的单调增区间为,
由,∴的单调减区间为.
当时,由,∴的单调减区间为,
由,∴的单调减区间为.
综上所述:当时, ,∴的单调增区间为,
当时,∴的单调增区间为,,的单调减区间为
当时,∴的单调增区间为,,的单调减区间为.
(3)若至少存在一个,使得,∴,
当时,,∴有解,令,
∴
,∴在上单调递减,
∴得,.
科目:高中数学 来源: 题型:
【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”、“演讲社”三个金牌社团中抽6人组成社团管理小组,有关数据见下表(单位:人):
社团名称 | 成员人数 | 抽取人数 |
话剧社 | 50 | a |
创客社 | 150 | b |
演讲社 | 100 | c |
(1)求的值;
(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆上一点向轴作垂线,垂足为左焦点,分别为的右顶点,上顶点,且,.
(1)求椭圆的方程;
(2)为上的两点,若四边形逆时针排列)的对角线所在直线的斜率为,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD,底面ABCD是边长为2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分别是BC,PC的中点。
(1)求证:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线:x=6,圆与轴相交于点(如图),点P(-1,2)是圆内一点,点为圆上任一点(异于点),直线与相交于点.
(1)若过点P的直线与圆相交所得弦长等于,求直线的方程;
(2)设直线的斜率分别为,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地参加2015 年夏令营的名学生的身体健康情况,将学生编号为,采用系统抽样的方法抽取一个容量为的样本,且抽到的最小号码为,已知这名学生分住在三个营区,从到在第一营区,从到在第二营区,从到在第三营区,则第一、第二、第三营区被抽中的人数分别为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com