如果a2=N(a>0,a≠1),则有
A.log2N=a
B.log2a=N
C.logna=2
D.logaN=2
科目:高中数学 来源:江西省吉水中学2012届高三第一次月考数学理科试题 题型:013
如果有穷数列a1,a2,a3…,am(m为正整数)满足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列”例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{bn}是项数为2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2010项和S2010可以是(1)22010-1;(2)21006-2;(3)2m+1-22m-2010-1其中正确命题的个数为
0
1
2
3
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试(北京卷)、数学(理) 题型:044
对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1.
对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);
又定义.
设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果数列A0为5,3,2,写出数列A1,A2;
(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(Ak+1)=S(Ak).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com