精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,求曲线在点处的切线方程;

2)当时,求最大的整数使得时,函数图象上的点都在

所表示的平面区域内(含边界.

【答案】(1) ;(2).

【解析】试题分析:(1)代入,得到的值,再利用点斜式,即可得到切线方程;

(2)时,当时, ,设,则问题等价于当时, ,再由,分分类讨论,即可求解的最大值

试题解析:(1)当时, ,则

∴所求的切线方程为,即

(2)时,由题意得 ,当时,

,设,则问题等价于

时,

时,若,则 递增,

故不满足条件

时,因为为整数,故,所以, 上递增

上递减, ,即

易知函数)为递减函数,又

所以满足的最大整数

综上可知,满足条件的最大的整数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与线段交于点.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了名男生、名女生进行为期一周的跟踪调查,调查结果如表所示:

平均每天使用手机超过小时

平均每天使用手机不超过小时

合计

男生

女生

合计

(1)能否在犯错误的概率不超过的前提下认为学生使用手机的时间长短与性别有关?

(2)在这名女生中,调查小组发现共有人使用国产手机,在这人中,平均每天使用手机不超过小时的共有人.从平均每天使用手机超过小时的女生中任意选取人,求这人中使用非国产手机的人数的分布列和数学期望.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, ,点 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知面垂直于圆柱底面, 为底面直径, 是底面圆周上异于的一点, .求证:

(1)平面平面

(2)求几何体的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间上的函数.

(1)求函数的单调区间;

(2)若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过点的直线交抛物线位于第一象限)两点.

(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;

(2)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

(1)求椭圆的标准方程;

(2)过点的直线交椭圆于两点,轴上的点,若是以为斜边的等腰直角三角形, 求直线的方程.

查看答案和解析>>

同步练习册答案