精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=|sin(ωx+$\frac{π}{3}$)|(ω>1)在区间[π,$\frac{5}{4}$π]上单调递减,则实数ω的取值范围是[$\frac{7}{6}$,$\frac{4}{3}$].

分析 由题意求得ω≤2,区间[π,$\frac{5}{4}π$]内的x值满足 kπ+$\frac{π}{2}$≤ωx+$\frac{π}{3}$≤kπ+π,k∈z,求得k+$\frac{1}{6}$≤ω≤$\frac{4}{5}$(k+$\frac{2}{3}$),k∈z,再给k取值,进一步确定ω的范围.

解答 解:∵函数f(x)=|sin(ωx+$\frac{π}{3}$)|(ω>0)在[π,$\frac{5π}{4}$π]上单调递减,
∴T=$\frac{π}{ω}$≥$\frac{π}{2}$,即ω≤2.
∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+$\frac{π}{2}$,kπ+π],k∈z,
由题意可得区间[π,$\frac{5}{4}π$]内的x值满足 kπ+$\frac{π}{2}$≤ωx+$\frac{π}{3}$≤kπ+π,k∈z,
即ω•π+$\frac{π}{3}$≥kπ+$\frac{π}{2}$,且ω•$\frac{5π}{4}$+$\frac{π}{3}$≤kπ+π,k∈z.
解得k+$\frac{1}{6}$≤ω≤$\frac{4}{5}$(k+$\frac{2}{3}$),k∈z.
求得:当k=0时,$\frac{1}{6}$≤ω≤$\frac{8}{15}$,不符合题意;当k=1时,$\frac{7}{6}$≤ω≤$\frac{4}{3}$;当k=2时,$\frac{13}{6}$≤ω≤$\frac{32}{15}$,不符合题意.
综上可得,$\frac{7}{6}$≤ω≤$\frac{4}{3}$,
故答案为:[$\frac{7}{6}$,$\frac{4}{3}$].

点评 本题主要考查三角函数的图象和性质,求出函数的单调递减区间是解决本题的关键,综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.甲、乙两人在一座9层大楼的地层进入电梯,若每个人直第二层开始在第一层离开电梯是等可能的,则2个人在不同楼层离开的概率是(  )
A.$\frac{1}{2}$B.$\frac{5}{6}$C.$\frac{8}{9}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中,△PAB为正三角形,四边形ABCD为矩形,平面PAB⊥平面ABCD,AB=2AD,M,N分别为PB,PC中点.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B-AM-C的大小;
(Ⅲ)在BC上是否存在点E,使得EN⊥平面AMN?若存在,求$\frac{BE}{BC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x+y=3”是“x=1且y=2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,E是边AC的中点,$\overrightarrow{BC}$=4$\overrightarrow{BD}$,若$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x+y=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知t为实数,函数f(x)=2loga(2x+t-2),g(x)=logax,其中0<a<1.
(1)若函数y=g(ax+1)-kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;
(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n-m的最小值为$\frac{1}{6}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若点A(-6,y)在抛物线y2=-8x上,F为抛物线的焦点,则AF的长度为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出S的值是(  )
A.10B.12C.100D.102

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,A为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是②③④.(写出所有正确的命题编号)
①线段BD是双曲线的虚轴;
②△PF1F2的面积为b2
③若∠MAN=120°,则双曲线C的离心率为$\frac{{\sqrt{21}}}{3}$;
④△PF1F2的内切圆的圆心到y轴的距离为a.

查看答案和解析>>

同步练习册答案