精英家教网 > 高中数学 > 题目详情

       已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;

       (Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;

       (Ⅱ)求切线长|PA|的最小值;

(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

       即点P(a,b)落在根轴l:x+y-4=0上;    ……………………  3分

    ⑵

    ∴当a=2时即P为(2,2)点时有    …………………  6分

⑶ 作M(0,2)关于直线L: x+y=4的对称点N,求得N(2,4),连接NO则NO分别与直线L、圆O的交点即为使|PM|+|PQ|的值最小的点P、Q; …………………  8分

       证明如下:

       在L上任取不同于点P的P1点,

       连接P1O交圆O于Q1,则

       |P1M|+|P1Q1|=|P1M|+|P1O|-1=|P1N|+|P1O|-1>|NO|-1

       而|PM|+|PQ|=|PM|+|PO|-1=|PN|+|PO|-1=|NO|-1 ,

       故得证;  …………… 11分

       下求|PM|+|PQ|的最小值及点P的坐标:

       (|PM|+|PQ|)Min=|NO|-1=

       联立ON与直线L的方程可得 …… 13分

练习册系列答案
相关习题

科目:高中数学 来源:辽宁省沈阳二中2011-2012学年高二上学期期中考试数学文科试题 题型:013

已知圆O:x2+y2=1,点P在直线上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是

[  ]
A.

[-2,2]

B.

[0,2]

C.

[-1,1]

D.

[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆Ox2y2=1和定点A(2,1),由圆O外一点P(ab)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.

(1)求ab间关系;

(2)求|PQ|的最小值;

(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

 已知圆Ox2y2=1和定点A(2,1),由圆O外一点P(ab)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.

(1)求ab间关系;

(2)求|PQ|的最小值;

(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|.

(1)求实数a、b间满足的等量关系;

(2)求切线长|PA|的最小值;

(3)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案