精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.

(1)椭圆方程为
(2)在x轴上存在点M(), 使是与K无关的常数.

解析试题分析:(1)∵椭圆离心率为
,∴.        1分
椭圆过点(,1),代入椭圆方程,得.        2分
所以.                          4分
∴椭圆方程为,即.           5分
(2)在x轴上存在点M,使是与K无关的常数.   6分
证明:假设在x轴上存在点M(m,0),使是与k无关的常数,
∵直线L过点C(-1,0)且斜率为K,∴L方程为
 得.      7分
,则      8分

              9分
=
=
=
=                 10分
设常数为t,则.                11分
整理得对任意的k恒成立,
解得,                    12分
即在x轴上存在点M(), 使是与K无关的常数.       13分
考点:椭圆的标准方程及几何性质,直线与椭圆的位置关系,平面向量的数量积。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。求椭圆标准方程时,主要运用了椭圆的几何性质,建立了a,bac的方程组。(2)作为研究,应用韦达定理,建立了m的函数式,利用函数观点,求得m的值,肯定存在性,使问题得解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,动点到两点的距离之和等于4,设点的轨迹为曲线C,直线过点且与曲线C交于A,B两点.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:,离心率为,焦点的直线交椭圆于两点,且的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ) 直线与y轴交于点P(0,m)(m0),与椭圆C交于相异两点A,B且.若,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆方程为,过右焦点斜率为1的直线到原点的距离为.

(1)求椭圆方程.
(2)已知为椭圆的左右两个顶点,为椭圆在第一象限内的一点,为过点且垂直轴的直线,点为直线与直线的交点,点为以为直径的圆与直线的一个交点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1) 求椭圆方程.
(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限.过轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为

(Ⅰ)当直线平分线段时,求的值;
(Ⅱ)当时,求点到直线的距离;
(Ⅲ)对任意,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H

(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.

查看答案和解析>>

同步练习册答案