精英家教网 > 高中数学 > 题目详情
已知直线l交椭圆4x2+5y2=80于M、N两点,椭圆与y轴的正半轴交于B点,△MBN的重心恰好落在椭圆的右焦点上,则直线l的方程为(    )

A.5x+6y-28=0         B.6x-5y-28=0      C.6x+5y-28=0         D.5x-6y-28=0

解法一:如图所示.

设l的方程为y=kx+m,M(x1,y1),N(x2,y2),由已知得椭圆的右焦点F(2,0),又B(0,4).

∴x1+x2=6,y1+y2=-4.

由方程组得4x2+5(kx+m)2=80.

化简得(4+5k2)+10kmx+5m2-80=0.

∴x1+x2=-.

解得k=,m=-.

∴l的方程为y=x-,即6x-5y-28=0.

故选B.

解法二:由已知得B(0,4),F(2,0),数形结合知l的斜率大于0,则排除A项、C项.可得MN的中点坐标是(3,-2).不在直线5x-6y-28=0上,排除D项,故选B.

答案:B


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S(0,
1
3
)的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的两焦点与短轴的一个端点的连线构成等腰直角三角形,且直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S (0, -
1
2
)
且斜率为1的直线l交椭圆C于M、N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1 (a>b>0)
的离心率e满足3, 
1
e
, 
4
9
成等比数列,且椭圆上的点到焦点的最短距离为2-
3
.过点(2,0)作直线l交椭圆于点A,B.
(1)若AB的中点C在y=4x(x≠0)上,求直线l的方程;
(2)设椭圆中心为,问是否存在直线l,使得的面积满足2S△AOB=|OA|•|OB|?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
|CD|
|ST|
=2
2

(I)求椭圆E的标准方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.
(i)当
QM
QN
=
19
3
时,求直线l的方程;
(ii)记△QMN的面积为S,若对满足条件的任意直线l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

同步练习册答案