精英家教网 > 高中数学 > 题目详情
17.如图,直三棱柱(侧棱垂直于底面)ABC-A1B1C1中,$CA=CB=\frac{1}{2}C{C_1}$,点D棱AA1的中点,且C1D⊥BD.
(1)求证:CA⊥CB;
(2)若CA=1,求四棱锥C1-A1B1BD的体积.

分析 (1)推导出C1D⊥CD,C1D⊥BD,C1D⊥BC,BC⊥CC1,且CC1∩C1D=C1,由此能证明CA⊥CB.
(2)过C1作C1M⊥A1B1于M,由此能求出四棱锥C1-A1B1BD的体积.

解答 证明:(1)∵四边形ACC1是矩形,且D是棱AA1的中点,
∴C1D⊥CD,又C1D⊥BD,且BD∩CD=D,
∴C1D⊥平面BCD,
∵BC?平面BCD,∴C1D⊥BC,
又∵BC⊥CC1,且CC1∩C1D=C1
∴BC⊥平面ACC1D1,AC?平面ACC1D1
∴CA⊥CB.
解:(2)过C1作C1M⊥A1B1于M,∵平面A1B1C1⊥平面ABB1A1
∴C1M⊥平面ABB1A1…(8分)
∵CA=1∴${A_1}D=1,A{A_1}=2,{A_1}{B_1}=\sqrt{2},{C_1}M=\frac{{\sqrt{2}}}{2}$
∴四边形A1B1BD的面积$S=\frac{1}{2}({A_1}D+B{B_1})×{A_1}{B_1}=\frac{{3\sqrt{2}}}{2}$…(10分)
∴四棱锥C1-A1B1BD的体积$V=\frac{1}{3}×S×{C_1}M=\frac{1}{2}$…(12分)

点评 本题考查线线垂直的证明,考百四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.定义在(-∞,0)∪(0,+∞)上的奇函数f(x),若函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式$\frac{f(x)}{x}<0$的解集为(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四边形ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE与平面ABCD所成角为45°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合{2,4}的真子集有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow m=(b,c-a),\overrightarrow n=(b-c,c+a)$,若$\overrightarrow m⊥\overrightarrow n,a=3$,
则$\frac{c}{sinC}$的值为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)
篮球排球总计
男同学16622
女同学81220
总计241842
(Ⅰ)据此判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.
①求从“排球小组”中抽取几人?
②已知甲、乙两人都是从“排球小组”中抽取出来的.从抽取出的7人中任意再选2人参加校排球队,求甲、乙两人至少有一人参加校排球队的概率是多少?
下面临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos300°+sin210°的值为(  )
A.1B.$\frac{1}{2}$C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.三棱锥的三组相对的棱(相对的棱是指三棱锥中成异面直线的一组棱)分别相等,且长分别为2,m,n,其中m2+n2=12,则该三棱锥体积的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象为如图所示的折线ABC,则$\int_{-1}^1{[xf(x)]}dx$=(  )
A.$-\frac{1}{3}$B.$-\frac{1}{6}$C.0D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案