精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)若恒成立,求实数m的取值范围.

【答案】1)当时,的单调递增区间是,无单调递减区间;当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2.

【解析】

1)对求导,对参数进行分类讨论,即可求得函数的单调性;

2)分离参数,根据的取值不同,进行分类讨论,将问题转化为函数最值的问题进行处理.

1

时,

时,由;由

时,由;由

综上:

时,的单调递增区间是,无单调递减区间

时,的单调递增区间是

单调递减区间是

时,的单调递增区间是

单调递减区间是

2

①当时,成立,故

②当时,

,即求上的最大值

上为减函数,且

故当时,时,

上单调递增,上单调递减

上的最大值为

③当时,

即求上的最小值

时,时,

上单调递减,上单调递增

上的最小值为

.

∴综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是曲线的切线.

1)求函数的解析式,

2)若,证明:对于任意有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:

1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;

2)将成绩在内定义为合格;成绩在内定义为不合格”.①请将下面的列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;

合格

不合格

合计

男生

26

女生

6

合计

3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C上的点到点的距离与它到直线的距离之比为,圆O的方程为,曲线Cx轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于BC两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中,设直线ABAC的斜率分别为

1)求曲线C的方程,并证明到点M的距离

2)求的值;

3)记直线PQBC的斜率分别为,是否存在常数,使得?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是是参数).以原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上的动点,过点且与垂直的直线交于点,求的最小值,并求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的辅圆”.过椭圆第一象限内一点Px轴的垂线交其辅圆于点Q,当点Q在点P的上方时,称点Q为点P上辅点”.已知椭圆上的点的上辅点为.

1)求椭圆E的方程;

2)若的面积等于,求上辅点Q的坐标;

3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形,边的中点,点在线段.

1)证明:平面平面

2)若平面,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期;

(2)将函数的图象向右平移个单位长度,再向下平移)个单位长度后得到函数的图象,且函数的最大值为2.

(ⅰ)求函数的解析式; (ⅱ)证明:存在无穷多个互不相同的正整数,使得

查看答案和解析>>

同步练习册答案