Èçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£© ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Çóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanºÍµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1µÄ¹Øϵʽ£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®
·ÖÎö£º£¨1£©ÀûÓÃÒÑÖªÌõ¼þÖ±½ÓÇóa1¡¢a2¡¢a3µÄÖµ£»
£¨2£©Ó루1£©ÀàËÆÇó³öÖ±Ïߵķ½³Ì£¬Í¨¹ýÇó³öµãAn£¨an£¬0£©£¨n¡ÊN+£©µÄºá×ø±êanÓëµãAn-1£¨an-1£¬0£©£¨n£¾0£¬n¡ÊN+£©ºá×ø±êan-1¼´¿ÉµÃµ½(an-an-1)2=2(an-1+an)£»
£¨3£©¸ù¾Ý£¨1£©µÄ½áÂÛ²ÂÏëan¹ØÓÚnµÄ±í´ïʽ£¬Ö±½ÓÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²½ÖèÖ¤Ã÷¼´¿É£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬OP1Ö±Ïß·½³ÌΪy=
3
xÓëÇúÏß·½³Ìy2=3xÁªÁ¢
½âµÃP1µãµÄºá×ø±êΪx1=1£¬ÓÉÖеã×ø±ê¹«Ê½µÃa1=2            ¡­£¨2·Ö£©
ͬÀí£ºA1P2Ö±Ïß·½³ÌΪy=
3
£¨x-2£©´úÈëy2=3xÇóµÃx2=4    ¡­£¨3·Ö£©
ÔÙÓÉÖеã×ø±ê¹«Ê½µÃa2=6£¬
A2P2Ö±Ïß·½³ÌΪy=
3
£¨x-6£©´úÈëy2=3xÇóµÃx3=9
ÔÙÓÉÖеã×ø±ê¹«Ê½µÃa3=12£¬¡­£¨4·Ö£©
£¨2£©ÒÀÌâÒ⣬µÃxn=
an-1+an
2
    ¢Ù¡­£¨5·Ö£©
Ö±ÏßAn-1PnµÄ·½³ÌΪy=
3
£¨x-an-1£©
Pn£¨xn£¬yn£©×ø±êÂú×ã·½³Ì£¬ÔòÓÐyn=
3
£¨xn-an-1£©¢Ú¡­£¨6·Ö£©
°Ñ¢Ù´úÈë¢ÚʽµÃ yn=
3
£¨
an-1+an
2
-an-1£©=
3
an-an-1
2
¢Û£¨7·Ö£©
ÒòΪyn2=3xn    ¢Ü¡­£¨8·Ö£©
°Ñ¢Ûʽ´úÈë¢ÜµÃ
(
3
an-an-1
2
)
2
=
3
2
(an+an-1)
£¬
¼´(an-an-1)2=2(an-1+an)¡­£¨9·Ö£©
£¨3£©ÓÉ£¨¢ñ£©¿É²ÂÏ룺an=n£¨n+1£©£¬n¡ÊN+£©£®  £¨10·Ö£©
ÏÂÃæÓÃÊýѧ¹éÄÉ·¨ÓèÒÔÖ¤Ã÷£º
£¨1£©µ±n=1ʱ£¬ÃüÌâÏÔÈ»³ÉÁ¢£»
£¨2£©¼Ù¶¨µ±n=kʱÃüÌâ³ÉÁ¢£¬¼´ÓÐak=k£¨k+1£©£¬¡­£¨11·Ö£©
Ôòµ±n=k+1ʱ£¬ÓɹéÄɼÙÉè¼°
(ak+1-ak)2=2(ak+ak+1)µÃ[ak+1-k(k+1)]2=2[k(k+1)]+ak+1£¬¼´
£¨ak+1£©2-2£¨k2+k+1£©ak+1+[k£¨k+1£©]•[£¨k+1£©£¨k+2£©]=0£¬
½âÖ®µÃ£ºak+1=£¨k+1£©£¨k+2£©£¬£¨ak+1=k£¨k-1£©£¬²»ºÏÌâÒ⣬ÉáÈ¥£©£¬
¼´µ±n=k+1ʱ£¬ÃüÌâ³ÉÁ¢£®                 ¡­£¨13·Ö£©
ÓÉ£¨1£©¡¢£¨2£©Öª£ºÃüÌâ³ÉÁ¢£®            ¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓë½âÎö¼¸ºÎÏà½áºÏµÄÎÊÌ⣬ֱÏßÓëÅ×ÎïÏßµÄλÖùØϵ£¬ÊýÁеĺ¯ÊýµÄÌØÕ÷£¬Êýѧ¹éÄÉ·¨µÄÓ¦Ó㬿¼²éÂß¼­ÍÆÀíÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Ð´³öa1£¬a2£¬a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®Ôòa1=
 
£»²ÂÏëan¹ØÓÚnµÄ±í´ïʽΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬P1£¨x1£¬y1£©¡¢P2£¨x2£¬y2£©¡¢¡­¡¢Pn£¨xn£¬yn£©£¨0£¼y1£¼y2£¼¡­£¼yn£©ÊÇÇúÏßC£ºy2=3x£¨y¡Ý0£©ÉϵÄn¸öµã£¬µãAi£¨ai£¬0£©£¨i=1£¬2£¬3£¬¡­£¬n£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒ¡÷Ai-1AiPiÊÇÕýÈý½ÇÐΣ¨A0ÊÇ×ø±êÔ­µã£©£®
£¨1£©Ð´³öa1£¬a2£¬a3£»
£¨2£©Çó³öµãAn£¨an£¬0£©£¨n¡ÊN*£©µÄºá×ø±êan¹ØÓÚnµÄ±í´ïʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬Èô¶ÔÈÎÒâµÄÕýÕûÊýn£¬µ±m¡Ê[-1£¬1]ʱ£¬²»µÈʽt2-2mt+
1
6
£¾bn
ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Õ¢±±Çø¶þÄ££©Èçͼ£¬P1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­£¬Pn£¨xn£¬yn£©£¬¡­ÊÇÇúÏßC£ºy2=
1
2
x(y¡Ý0)
Éϵĵ㣬A1£¨a1£¬0£©£¬A2£¨a2£¬0£©£¬¡­£¬An£¨an£¬0£©£¬¡­ÊÇxÖáÕý°ëÖáÉϵĵ㣬ÇÒ¡÷A0A1P1£¬¡÷A1A2P2£¬¡­£¬¡÷An-1AnPn£¬¡­¾ùΪб±ßÔÚxÖáÉϵĵÈÑüÖ±½ÇÈý½ÇÐΣ¨A0Ϊ×ø±êÔ­µã£©£®
£¨1£©Ð´³öan-1¡¢anºÍxnÖ®¼äµÄµÈÁ¿¹Øϵ£¬ÒÔ¼°an-1¡¢anºÍynÖ®¼äµÄµÈÁ¿¹Øϵ£»
£¨2£©²Â²â²¢Ö¤Ã÷ÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éèbn=
1
an+1
+
1
an+2
+
1
an+3
+¡­+
1
a2n
£¬¼¯ºÏB={b1£¬b2£¬b3£¬¡­£¬bn£¬¡­}£¬A={x|x2-2ax+a2-1£¼0£¬x¡ÊR}£¬ÈôA¡ÉB=∅£¬Çóʵ³£ÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸