精英家教网 > 高中数学 > 题目详情

【题目】某超市计划按月订购一种酸奶,每天进货量相同,已知每售出一箱酸奶的利润为50元,当天未售出的酸奶降价处理,以每箱亏损10元的价格全部处理完.若供不应求,可从其它商店调拨,每销售1箱可获利30元.假设该超市每天的进货量为14箱,超市的日利润为元.为确定以后的订购计划,统计了最近50天销售该酸奶的市场日需求量,其频率分布表如图所示.

序号

分组

频数(天)

频率

1

0.16

2

12

3

0.3

4

5

5

0.1

合计

50

1

1)求的值;

2)求关于日需求量的函数表达式;

3)以50天记录的酸奶需求量的频率作为酸奶需求量发生的概率,估计日利润在区间内的概率.

【答案】(1);(2);(30.54

【解析】

(1)根据频率,频数,和样本容量之间的关系求解即可;

(2)根据题意,利用分段函数表示关于的函数表达式;

(3)根据(2)中的解析式,计算出,的取值范围,即可计算概率.

(1),

,

,

,

;

(2)超市的日利润关于日需求量的函数表达式为

(3)(2):,,

,解得;

,,

,解得;

所以,,

故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出直线的直角坐标方程;

(2)设点的坐标为,若点是曲线截直线所得线段的中点,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD

求证:平面PAC

若侧棱PC上的点F满足,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点x1x2,且x1x2

1)求实数a的取值范围;

2)求证:x1x2a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,平面PAC垂直圆O所在平面,直线PC与圆O所在平面所成角为60°,PA⊥PC.

(1)证明:AP⊥平面PBC

(2)求二面角P—AB一C的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆,直线x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为

(1)求椭圆的离心率;

(2) 设点C、D、F2分别为椭圆的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆 相交于M、N 两点,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cnx22nx+y2=0,(n=12.从点P(﹣10)向曲线Cn引斜率为knkn>0)的切线ln,切点为Pnxnyn.

(1)求数列{xn}与{yn}的通项公式;

(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角所对的边分别为,且

(1)求角的大小;

(2)若,求的值。

查看答案和解析>>

同步练习册答案