精英家教网 > 高中数学 > 题目详情
13.已知数列{log2(an-1)},(n∈N*)为等差数列,且a1=3,a4=17.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和sn

分析 (1)通过记bn=log2(an-1),利用a1=3、a4=17可知数列{bn}是以首项、公差均为1的等差数列,进而可知log2(an-1)=n,计算即得结论;
(2)通过an=1+2n,利用分组求和法计算即得结论.

解答 解:(1)记bn=log2(an-1),依题意,有
b1=log2(a1-1)=1,b4=log2(a4-1)=4,
∴数列{bn}是以首项、公差均为1的等差数列,
∴bn=n,即log2(an-1)=n,
∴数列{an}的通项公式an=1+2n
(2)∵an=1+2n
∴Sn=(1+2+…+n)+(2+22+…+2n
=$\frac{n(n+1)}{2}$+$\frac{2(1-{2}^{n})}{1-2}$
=$\frac{n(n+1)}{2}$+2n+1-2.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c满足a>b>c,a+b+c=0(a,b,c∈R).
(1)是否存在m∈R,使得当f(x)=-a成立时,f(m+3)为正数,证明你的结论; 
(2)求证:方程式f(x)=g(x)的两根都小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=f(x)的图象是自原点出发的一条折线,当n≤y≤n+1(n=0,1,2…)时,该图象是斜率为bn的线段(其中正常数b≠1),设数列{xn},由f(xn)=n(n=1,2…)定义,
(文科)则x1+x2=$2+\frac{1}{b}$
(理科)则xn的通项公式为${x}_{n}=\frac{b-\frac{1}{{b}^{n-1}}}{b-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=${(\frac{a}{x}+\sqrt{x})^9}$,(a为实数并且是常数)
(Ⅰ)已知f(x)的展开式中x3的系数为$\frac{9}{4}$,求常数a.
(Ⅱ)已知a>0,是否存在a的值,使x在定义域中取任意值时,f(x)≥27恒成立?如存在,求出a的值,如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项a1=1,a2=3,前n项和为Sn,且Sn+1,Sn,Sn-1(n>1)分布是直线l上的点A,B,C的横坐标,$\overrightarrow{AB}=\frac{{2{a_n}+1}}{a_n}\overrightarrow{BC}$,设b1=1,bn+1=log2(an+1)+bn
(1)判断数列{an+1}是否为等比数列,并证明你的结论;
(2)设${C_n}=\frac{{{4^{\frac{{{b_{n+1}}-1}}{n+1}}}}}{{{a_n}{a_{n+1}}}}$,证明:C1+C2+C3+…+Cn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$($\sqrt{2-{x}^{2}}$)dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(x-1,y),$\overrightarrow{b}$=(x+1,y).|$\overrightarrow a$|+|$\overrightarrow b$|=4
(1)求M(x,y)的轨迹方程C.
(2)P为曲线C上一动点,F1(-1,0),F2(1,0),求$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的最大值和最小值;
(3)直线l与曲线C交于A,B两点,若以AB为直径的圆过原点O,试探究点O到直线l 的距离是否为定值?若是,求出该定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在区间[0,a](a≥10)上随机选取一个数x,若数x落在[0,10]的概率为$\frac{1}{4}$,则a=40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有(  )
A.12种B.19种C.32种D.60种

查看答案和解析>>

同步练习册答案