【题目】已知函数f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集为[0,1].
(1)求m的值;
(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.
【答案】见解析
【解析】(1)由f(x+1)≥0得|x|+|x-1|≤m.
∵|x|+|x-1|≥1恒成立,
∴若m<1,不等式|x|+|x-1|≤m的解集为,不合题意.
若m≥1,①当x<0时,得x≥,则≤x<0;
②当0≤x≤1时,得x+1-x≤m,即m≥1恒成立;
③当x>1时,得x≤,则1<x≤.
综上可知,不等式|x|+|x-1|≤m的解集为.
由题意知,原不等式的解集为[0,1],
∴ 解得m=1.
(2)证明:∵x2+a2≥2ax,y2+b2≥2by,z2+c2≥2cz,
三式相加,得x2+y2+z2+a2+b2+c2≥2ax+2by+2cz.
由题设及(1),知x2+y2+z2=a2+b2+c2=m=1,
∴2≥2(ax+by+cz),即ax+by+cz≤1,得证.
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):
(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);
(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acos θ(a>0),过点P(-2,-4)的直线l: (t为参数)与曲线C相交于M,N两点.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上表补充完整(不用写计算过程);
(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,椭圆的左、右焦点分别为, 也是抛物线的焦点,点M为在第一象限的交点,且.
(1)求的方程;
(2)平面上的点N满足,直线,且与交于A,B两点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知=(sinx,cosx),=(cosφ,sinφ)(|φ|<).函数
f(x)= 且f(-x)=f(x).
(Ⅰ)求f(x)的解析式及单调递增区间;
(Ⅱ)将f(x)的图象向右平移单位得g(x)的图象,若g(x)+1≤ax+cosx在x∈[0, ]上恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com