精英家教网 > 高中数学 > 题目详情
判断下列函数的奇偶性
(1)f(x)=a  (a∈R)
(2)f(x)=(1+x)3-3(1+x2)+2
(3)f(x)=
x(1-x),x<0
x(1+x),x>0
分析:(1)是一个常函数,其一般是偶函数,当a=0时,函数既是奇函数又是偶函数,a≠0时,一定是偶函数;可以用定义证明;
(2)对函数解析式进行化简,再研究f(x)与f(-x)的关系,证明f(x)+f(-x)=0即可得了其是奇函数;
(3)是一个分段函数,分段函数的奇偶性要分段来证,先研究x<0时,f(x)与f(-x)的关系,再研究x>0时,
f(x)与f(-x)的关系.探究知在每一段上都满足f(-x)=-f(x),故可得出其性质.
解答:解:(1)由奇偶性定义当a=0时,f(x)=0既是奇函数又是偶函数,当a≠0时,f(x)=f(-x)=a,故是偶函数;
(2)f(x)=(1+x)3-3(1+x2)+2=x3+3x,由于f(x)+f(-x)=x3+3x+(-x)3+3(-x)=0,故f(x)=(1+x)3-3(1+x2)+2是奇函数.
(3)当x<0时,-x>0,f(-x)=-x(1-x)=-f(x);当x>0时,-x<0,f(-x)=-x(1+x)=-f(x);由上证知,
在定义域上总有f(-x)=-f(x);故函数f(x)=
x(1-x),x<0
x(1+x),x>0
是奇函数.
点评:本题考查用函数奇偶性的定义证明函数的奇偶性,属于基础定义的直接应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(A)f(x)=
0(x为无理数)
1(x为有理数)
 

(B)f(x)=ln(
1+x2
-x)
 

(C)f(x)=
1+sinx-cosx
1+sinx+cosx
 

(D)f(x)=
x
ax-1
+
x
2
,(a>0,a≠0)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性.
(1)y=lg
tanx+1
tanx-1

(2)f(x)=lg(sinx+
1+sin2x
)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性
(1)y=x4+
1x2
;         (2)f(x)=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并说明理由.
(1)f(x)=
1-x2
|x+3|-3
;  (2)f(x)=x2-|x-a|+2(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,并证明:
(1)f(x)=x+
1x
           (2)f(x)=x4-1.

查看答案和解析>>

同步练习册答案