精英家教网 > 高中数学 > 题目详情

【题目】如图,已知多面体的底面是边长为2的正方形, 底面 ,且

(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

(Ⅱ)求直线与平面所成角的正弦值;

【答案】(Ⅰ)见解析;(Ⅱ)∴

【解析】试题分析() 取线段的中点,连结,直线即为所求

() 以点为原点, 所在直线为轴, 所在的直线为轴,建立空间直角坐标系,求出平面的一个法向量,利用向量的夹角公式,即可求直线与平面所成角的正弦值;

试题解析:(Ⅰ)取线段的中点,连结,直线即为所求.如图所示:

(Ⅱ)以点为原点, 所在直线为轴, 所在的直线为轴,建立空间直角坐标系,如图.由已知可得 ,∴

设平面的法向量为,得,得平面的一个法向量为,设直线与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:空间四边形ABCD如图所示,E、F分别是AB、AD的中点,G、H分别是BC,CD上的点,且 . ,则直线FH与直线EG(
A.平行
B.相交
C.异面
D.垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:

(Ⅰ)求图中的值;

(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(Ⅲ)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如表所示,求数学成绩在之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若3cos(2α+β)+5cosβ=0,则tan(α+β)tanα的值为(
A.±4
B.4
C.﹣4
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:x2+y2﹣2mx﹣2y+4m﹣4=0,(m∈R).
(1)试求m的值,使圆C的面积最小;
(2)求与满足(1)中条件的圆C相切,且过点(1,﹣2)的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的三内角A、B、C所对边的长分别为a、b、c,设向量 ,若
(1)求角B的大小;
(2)若△ABC的面积为 ,求AC边的最小值,并指明此时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如右图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨, )表示下一个销售季度的市场需求量, (单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

(Ⅰ)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小;

(Ⅱ)根据直方图估计利润不少于57万元的概率.

查看答案和解析>>

同步练习册答案