精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列(公差不为零)和等差数列,如果关于的实系数方程有实数解,那么以下九个方程)中,无实数解的方程最多有(

A.3B.4C.5D.6

【答案】B

【解析】

设等差数列的公差为不为零,等差数列的公差为,运用求和公式,化简可得,,设方程与方程的判别式分别为,利用等差数列的性质可得,从而判断方程实数解的情况;同理可得剩余方程实数解的情况.

设等差数列的公差为不为零,等差数列的公差为

因为关于的实系数方程有实数解,

所以

,化简得,所以第五个方程有解.

设方程与方程的判别式分别为

,

所以至多一个成立,

同理可知,至多一个成立,至多一个成立,至多一个成立,

所以在所给的个方程中无实数解的方程最多.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,函数.

1)若,求函数在区间上的最大值;

2)若,写出函数的单调区间(写出必要的过程,不必证明);

3)若存在,使得关于的方程有三个不相等的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有大小相同的2个白球、3个红球;现从中先后有放回地任取球两次,每次取一个球,看完后放回盒中.

1)求两次取得的球颜色相同的概率;

2)若在2个白球上都标上数字13个红球上都标上数字2,记两次取得的球上数字之和为,求的概率分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式某大型超市为调查顾客自由购的使用情况随机抽取了100人,调查结果整理如下

20以下

[20,30)

[30,40)

[40,50)

[50,60)

[60,70]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取1名顾客试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在的概率

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某文体局为了解“跑团”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的数据,绘制了下面的折线图.根据折线图,下列结论正确的是( )

A. 月跑步平均里程的中位数为6月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相对于6月至11月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,,其中.

(1)若函数的图像过点,求实数的值;

(2),试判断函数上的单调性并证明;

(3)设函数若对每一个不小于的实数,都恰有一个小于的实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且

1)令证明:是等差数列,是等比数列;

2)求数列的通项公式;

3)求数列的前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,的前项和为,且满足.

1)试求数列的通项公式;

2)令的前项和,证明:

3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.

查看答案和解析>>

同步练习册答案