精英家教网 > 高中数学 > 题目详情
2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2),圆O:x2+y2=a2+4,椭圆C的左、右焦点分别为F1,F2过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|•|PF2|=6,则|PM|•|PN|的值为6.

分析 设出P的坐标,把P的纵坐标用横坐标表示,然后由焦半径公式及|PF1|•|PF2|=6,求得P的横纵坐标的平方和,由对称性得到|PM|•|PN|=a2+4-|OM|2=a2+4-x02-y02,代入横纵坐标的平方和后整理得答案.

解答 解:设P(x0,y0),
∵P在椭圆上,∴$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{4}$=1,则y02=4(1-$\frac{{{x}_{0}}^{2}}{{a}^{2}}$),
∵|PF1|•|PF2|=6,∴(a+ex0)(a-ex0)=6,e2=$\frac{{a}^{2}-4}{{a}^{2}}$,
即x02=$\frac{{a}^{2}({a}^{2}-6)}{{a}^{2}-4}$,
由对称性得|PM|•|PN|=a2+4-|OP|2=a2+4-x02-y02
=a2+4-$\frac{{a}^{2}({a}^{2}-6)}{{a}^{2}-4}$-4+$\frac{4({a}^{2}-6)}{{a}^{2}-4}$=6.
故答案为:6.

点评 本题考查了椭圆的简单几何性质,考查了焦半径公式的应用,考查了计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若双曲线的顶点为椭圆x2+$\frac{y^2}{2}$=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是$\frac{y^2}{2}-\frac{x^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设P和Q是两个集合,定义集合P+Q={x∈P或x∈Q且∉P∩Q},若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )
A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函数,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为(  )
A.0B.1C.-1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在R上的奇函数,f(-4)=-1,f(x)的导函数f′(x)≥0,若正数a,b满足f(a+2b)≤1,则当a+2b取得最大值时,$\frac{1}{a}+\frac{2}{b}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x3-px2-qx的图象与x轴相切于点(1,0),则f(x)的单调增区间为(-∞,$\frac{1}{3}$)或(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在(0,+∞)上的函数f(x)为单调函数,且$f({f(x)-\frac{4}{x}})=4$,则f(1)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}中,a3=9,a5=17,记数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和为Sn,若S2n+1-Sn≤$\frac{m}{15},({m∈Z})$,对任意的n∈N*成立,则整数m的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案