精英家教网 > 高中数学 > 题目详情
已知幂函数y=f(x)的图象过点(
2
2
2
)

(1)求函数f(x)的解析式;
(2)记g(x)=f(x)+x,判断g(x)在(1,+∞)上的单调性,并证明之.
分析:(1)先由幂函数的定义用待定系数法设出其解析式,代入点的坐标,求出幂函数的解析式即可;
(2)函数在区间(1,+∞)上为增函数,理由为:在区间(1,+∞)上任取x1>x2>1,求出f(x1)-f(x2),通分后,根据设出的x1>x2>1,判定其差大于0,即f(x1)>f(x2),从而得到函数为增函数.
解答:解:(1)由题意令y=f(x)=xa,由于图象过点(
2
2
2
),
2
2
=
2
a,a=-1
∴y=f(x)=x-1
(2)g(x)=f(x)+x=x+
1
x

函数g(x)=x+
1
x
在区间(1,+∞)上是增函数,
证明:任取x1、x2使得x1>x2>1,
都有 g(x1)-g(x2)=(x1+
1
x1
)-(x2+
1
x2
)=
(x1-x2)(x1x2-1)
x1x2

由x1>x2>1得,x1-x2>0,x1x2>0,x1x2-1>0,
于是g(x1)-g(x2)>0,即g(x1)>g(x2),
所以,函数g(x)=x+
1
x
在区间(1,+∞)上是增函数.
点评:本题考查幂函数的单调性、奇偶性及其应用,解题的关键是熟练掌握幂函数的性质,能根据幂函数的性质求其解析式,求函数值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(
12
,8)
,则f(-2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)经过点(2,
12
)

(1)试求函数解析式;
(2)判断函数的奇偶性并写出函数的单调区间;
(3)试解关于x的不等式f(3x+2)+f(2x-4)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
)
,则f(x)=
x
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,
2
),则f(4)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过(2,
2
2
)
,则可以求出幂函数y=f(x)是(  )

查看答案和解析>>

同步练习册答案