精英家教网 > 高中数学 > 题目详情
(2008•虹口区二模)已知一次函数f(x)=ax+b,二次函数g(x)=ax2+bx+c,a>b>c,且a+b+c=0
(1)证明:y=f(x)与y=g(x)图象有两个不同的交点A和B
(2)若A1、B1分别是点A、B在x轴上的射影,求线段A1B1长度的取值范围
(3)证明:当x≤-
3
时,恒有f(x)<g(x)
分析:(1)若a>b>c,且a+c+b=0,可得a>0>c,令G(x)=f(x)-g(x)=0,判断判别式△=(b-a)2-4ac>0即可.
(2))由设 A(x1,0),B(x2,0)根据方程根与系数的关系可得,AB=|x2-x1|=
(x2+x1)2-4x1x2 
,结合a+b+c=0,a>0>c进行判断.
(3)要证当 x≤-
3
时,f(x)<g(x)恒成立,即要证ax2+(b-a)x+c-b≥0恒成立,x≤-
3
,构造函数h(x)=ax2+(b-a)x+c-b,x≤-
3
,利用二次函数的知识即可证得结果.
解答:解:(1)证明:由
y=ax+b
y=ax2+bx+c
得ax2+(b-a)x+c-b=0①
△=(b-a)2-4a(c-b)=(b+a)2-4ac
∵a>b>c,a+b+c=0
∴a>0,c<0
∴△>0
∴①有两个不等的根
∴函数y=f(x)与y=g(x)的图象有两个不同的交点A,B.
(2)∵a+b+c=0且a>b>c,
∴a>0,c<0.
由a>b得a>-(a+c),
c
a
>-2.
由b>c得-(a+c)>c,
c
a
<-
1
2

∴-2<
c
a
<-
1
2

设A1(x1,0)B1(x2,0)
∴|A1B1|=|x2-x1|  =
(x2+x1)2-4x1x2

=
(
a-b
a
)
2
-4
c-b
a
=
(
c
a
-2) 2-4

易得
9
4
<|A1B1|2<12
3
2
<|A1B1|<2
3

(3)令h(x)=ax2+(b-a)x+c-b,x≤-
3

对称轴为x=
a-b
a
=
2a+c
a
=2+
c
a
>0,
∴h(x)在(-∞,-
3
)上单调递增,且h( -
3
)=(2+
3
)(2a+c)=(2+
3
)a(2+
c
a
)>0
∴h(x)=ax2+(b-a)x+c-b≥0恒成立,x≤-
3

即当 x≤-
3
时,f(x)<g(x)恒成立.
点评:本题的考点是二次函数的性质,考查综合利用二次函数相关知识证明问题的能力,本题在解题中技巧性很强,如(1)中消去参数b利于确定判别式的范围,(2)中灵活运用a>b>c且a+b+c=0来确定
c
a
的范围,此类技巧的运用需要平时经验的积累,以及数学素养的提高,题后应对这些变形的技巧的变形过程及变形后达到目标进行细致的分析,力争能把握此类技巧的使用.考查函数与方程的转化,方程的根与系数的关系,函数的图象与x轴相交的线段的长度的求解,考查的知识点比较多,是一道综合性比较好的试题,体现了函数、方程、不等式的相互转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•虹口区二模)若复数(1+ai)•(a2+i)是纯虚数,则实数a=
0或1
0或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)等差数列{an}中,S20=30,则a3+a18=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)集合A={x||x|≤4,x∈R},B{x||x-3|≤a,x∈R},且A?B,则实数a的取值范围是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)当x>2时,使不等式x+
1x-2
≥a恒成立的实数a的取值范围是
(-∞,4]
(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)过点A(0,3),被圆(x-1)2+y2=4截得的弦长为2
3
的直线方程是
x=0或y=-
4
3
x+3
x=0或y=-
4
3
x+3

查看答案和解析>>

同步练习册答案