精英家教网 > 高中数学 > 题目详情
13.设曲线f(x)=2mx-ln(x+1)在点(0,0)处的切线方程为y=3x,则m的值为(  )
A.1B.-1C.2D.-2

分析 根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.

解答 解:y=ax-ln(x+1)的导数
y′=2m-$\frac{1}{x+1}$,
由在点(0,0)处的切线方程为y=3x,
得2m-1=3,
则m=2.
故选:C.

点评 本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数 f (x) 对任意x∈R都有f(x)+f(1-x)=2011.
(1)求 f($\frac{1}{2}$)的值.
(2)数列{an} 满足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-2}{n}$)+f($\frac{n-1}{n}$)+f(1),求数列{$\frac{{{2a}_{n}a}^{n}}{2011}$}的前n项和Sn
(3)若Tn=$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$,证明:${T_n}<\frac{4}{{{{2011}^2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公司生产某种产品投入固定资本20万元,以后生产x万件(x>1且x∈N*)产品需再投入可变资本a(x2-1)万元,收入资金为R(x)=160x-3.8x2-1480.2万元,已知当生产10万件产品时,投入资本可达到39.8万元.
(1)求出投入资本y(万元)关于生产产品件数x(万件)的函数解析式;
(2)求计划生产多少万件产品时,利润最大?最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|(1-x)x>0},N={y|y=x2+2x+3},则(∁RM)∩N=(  )
A.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=m分别与曲线y=x+1,y=elogax(a>1)交于A、B两点,当|AB|的最小值为1时,a的值为(  )
A.eB.2C.3D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是教材选修1-2中《推理与证明》一章的知识结构图,请把A处填入适当的方法综合法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简求值:($\frac{a}{a-b}$-$\frac{{a}^{2}}{{a}^{2}-2ab+{b}^{2}}$)÷($\frac{a}{a+b}$-$\frac{{a}^{2}}{{a}^{2}-{b}^{2}}$),其中a=2,b=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的函数f(x)满足:f(x)=$\frac{{2}^{x}}{f(x-4)}$,则$\frac{f(16)}{f(0)}$=256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,某城市有一条公路正西方AO通过市中心O后转向北偏东α角方向的OB,位于该市的某大学M与市中心O的距离OM=3$\sqrt{13}$km,且∠AOM=β,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,且经过大学M,其中tanα=2,cosβ=$\frac{3}{{\sqrt{13}}}$,AO=15km.
(1)求大学M在站A的距离AM;
(2)求铁路AB段的长AB.

查看答案和解析>>

同步练习册答案