【题目】定义在[﹣1,1]上的奇函数f(x),已知当x∈[﹣1,0]时的解析式f(x)= ﹣ (a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.
【答案】
(1)解:∵函数f(x)是定义在[﹣1,1]上的奇函数,
又∵
∴ =1﹣a=0
解得a=1
即当x∈[﹣1,0]时的解析式
当x∈[0,1]时,﹣x∈[﹣1,0]
∴ =4x﹣2x=﹣f(x)
∴f(x)=2x﹣4x(x∈[0,1])
(2)解:由(1)得当x∈[0,1]时,f(x)=2x﹣4x
令t=2x(t∈[1,2])
则2x﹣4x=t﹣t2,
令y=t﹣t2(t∈[1,2])
则易得当t=1时,y有最大值0
f(x)在[0,1]上的最大值为0
【解析】(1)由函数f(x)为定义在[﹣1,1]上的奇函数,其图象经过坐标原点,则根据x∈[﹣1,0]时的解析式 ,构造关于a的方程,再结合奇函数的性质,求出函数f(x)在[0,1]上的解析式.(2)根据(1)中函数的解析式,我们用换元法可将函数的解析式,转化为一个二次函数的形式,我们分析出函数的单调性,进而求出f(x)在[0,1]上的最大值.
【考点精析】掌握函数的最值及其几何意义和函数的奇函数是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
科目:高中数学 来源: 题型:
【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的个数是
①首次服用该药物1单位约10分钟后,药物发挥治疗作用
②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x),对任意a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,当x>0时,f(x)>1;且f(2)=3,
(1)求f(0)及f(1)的值;
(2)判断函数f(x)在R上的单调性,并给予证明;
(3)若f(﹣kx2)+f(kx﹣2)<2对任意的x∈R恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,
,圆与椭圆在第一象限交于点,在第二象限交于点.
(1)求椭圆的方程;
(2)求的最小值,并求出此时圆的方程;
(3)设点是椭圆上异于的一点,且直线分别与轴交于点为坐标原点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数.
(1)当时,求函数的单调递增区间;
(2)设定义在上的函数在点处的切线方程为,若在内恒成立,则称为函数的“类对称点”,当时,试问是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是直角梯形, , , , , 是等边三角形,且侧面底面, 分别是, 的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求平面与平面所成的二面角(锐角)的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com