精英家教网 > 高中数学 > 题目详情

【题目】二进制来源于我国古代的《易经》,该书中有两类最基本的符号:“─”﹣﹣,其中“─”在二进制中记作“1”﹣﹣在二进制中记作“0”.如符号对应的二进制数0112化为十进制的计算如下:01120×22+1×21+1×20310.若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为(

A.B.C.D.

【答案】D

【解析】

分类计算得到从两类符合中任取2个符号排列,则组成不同的十进制数为0123,即可计算得到概率.

根据题意,不同符号可分为三类:

第一类:由两个“─”组成,其二进制为:112310

第二类:由两个﹣﹣组成,其二进制为:002010

第三类:由一个“─”和一个﹣﹣组成,其二进制为:102210012110

所以从两类符号中任取2个符号排列,则组成不同的十进制数为0123

则得到的二进制数所对应的十进制数大于2的概率P

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000,上下浮动不超过50.这句话用数学语言来表达就是:每个面包的质量服从期望为1000,标准差为50的正态分布.

1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000的个数为,求的分布列和数学期望;

2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468.庞加莱购买的25个面包质量的统计数据(单位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

尽管上述数据都落在上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由

附:

,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量

,则

通常把发生概率在0.05以下的事件称为小概率事件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,底面分别是上的点,且平面

(Ⅰ)求证:的中点;

(Ⅱ)当与平面所成的角最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当函数与函数图象的公切线l经过坐标原点时,求实数a的取值集合;

2)证明:当时,函数有两个零点,且满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集了生产线的技术改造前后各20次连续正常运行的时间长度(单位:天)数据,并绘制了如下茎叶图:

(Ⅰ)(1)设所采集的40个连续正常运行时间的中位数,并将连续正常运行时间超过和不超过的次数填入下面的列联表:

超过

不超过

改造前

改造后

试写出的值;

2)根据(1)中的列联表,能否有的把握认为生产线技术改造前后的连续正常运行时间有差异?

附:

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)工厂的生产线的运行需要进行维护.工厂对生产线的生产维护费用包括正常维护费、保障维护费两种对生产线设定维护周期为天(即从开工运行到第天()进行维护.生产线在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费为0.5万元次;保障维护费第一次为0.2万元周期,此后每增加一次则保障维护费增加0.2万元.现制定生产线一个生产周期(以120天计)内的维护方案:234.以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0),F为抛物线C的焦点.以F为圆心,p为半径作圆,与抛物线C在第一象限交点的横坐标为2

1)求抛物线C的方程;

2)直线ykx+1与抛物线C交于AB两点,过AB分别作抛物线C的切线l1l2,设切线l1l2的交点为P,求证:△PAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列判断正确的是(

A.函数的最小正周期为,在上单调递增

B.函数的最小正周期为,在上单调递增

C.函数的最小正周期为,在上单调递增

D.函数的最小正周期为,在上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年女排世界杯(第13届女排世界杯)是由国际排联举办的赛事,比赛于2019年9月14日至9月29日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球_,已知这种球的质量指标ξ(单位:)服从正态分布.比赛赛制采取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取53胜制):比赛中以取胜的球队积3分,负队积0分;而在比赛中以取胜的球队积2分,负队积1.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22.10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为.

1)如果比赛准备了1000个排球,估计质量指标在内的排球个数(计算结果取整数)

2)第10轮比赛中,记中国队取胜的概率为,求出的最大值点,并以作为p的值,解决下列问题.

i)在第10轮比赛中,中国队所得积分为X,求X的分布列;

ii)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.

参考数据:,则

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e为自然对数的底数)

(Ⅰ)当a=1时,求f(x)的单调区间;

(Ⅱ)若函数f(x)在 上无零点,求a的最小值;

(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案